|
class | BeamSearch |
|
class | Combinations< T > |
| Combinations defines a meta-collection, typically a list of lists, of all possible subsets of a particular size from the set of values. This list is enumerable and allows the scanning of all possible combinations using a simple foreach() loop. Within the returned set, there is no prescribed order. This follows the mathematical concept of choose. For example, put 10 dominoes in a hat and pick 5. The number of possible combinations is defined as "10 choose 5", which is calculated as (10!) / ((10 - 5)! * 5!). More...
|
|
interface | IMetaCollection< T > |
| Interface for Permutations, Combinations and any other classes that present a collection of collections based on an input collection. The enumerators that this class inherits defines the mechanism for enumerating through the collections. More...
|
|
class | Permutations< T > |
| Permutations defines a meta-collection, typically a list of lists, of all possible orderings of a set of values. This list is enumerable and allows the scanning of all possible permutations using a simple foreach() loop. The MetaCollectionType parameter of the constructor allows for the creation of two types of sets, those with and without repetition in the output set when presented with repetition in the input set. More...
|
|
class | SmallPrimeUtility |
| Utility class that maintains a small table of prime numbers and provides simple implementations of Prime Factorization algorithms. This is a quick and dirty utility class to support calculations of permutation sets with indexes under 2^31. The prime table contains all primes up to Sqrt(2^31) which are all of the primes requires to factorize any Int32 positive integer. More...
|
|
class | Variations< T > |
| Variations defines a meta-collection, typically a list of lists, of all possible ordered subsets of a particular size from the set of values. This list is enumerable and allows the scanning of all possible Variations using a simple foreach() loop even though the variations are not all in memory. More...
|
|
class | EditPath |
|
class | GraphEditDistance |
|
class | IsomorphismCandG |
| Implémentation de l'algorithme de Corneil et Gotlieb permettant de savoir si un graphe est isomorphe ou sous-graphe d'un autre. More...
|
|
class | Labels |
| Labels hérite de Label et contient une liste de Label. Il permet de représenter les Label du graphe qui sont contenus dans un noeud de l'arbre de recherche SearchTree. More...
|
|
class | ResultIsomorphism |
| Résultat d'un test d'isomorphisme. Cet objet permet de savoir si le graphe est sous graphe de l'autre, si le graphe et isomorphe à l'autre, et de connaître la profondeur maximale des noeuds explorés. More...
|
|
class | SearchTree |
| L'arbre de recherche est un graphe qui est toujours orienté. More...
|
|
class | Vf |
| Implémente l'algorithme VF de Cordella servant à déterminer l'isomorphisme entre deux graphes. More...
|
|