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Questions?

e Have you ever heard about Graphs?



Graphs for PR and Mining

» Outline . = OV
PR . AU O TR B
» Definitions, representation \:~- _‘ /®\. @8@ == 6@0
» Recall about graphs @ 9%
» Storing Graphs in memory oz —

» Types of problems (in PR, ML and DM)

» Graph Analysis / Mining
Graph Characterization
Graph partitioning
Pattern detection
Graph indexing

» Graphs for PR (in CV and ML)

» Graph Matching
» Graph comparison
» Graph and deep learning
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e above is just an approximation drawn
visually. The RAG wasn't computed by any




Why using graphs?

Structural Methods

— Graphs by nature

— Relational data or structured data are designed
as graphs

— Non vectorial methods can guarantee to preserve
the topological information

— Combining sources of data
— An image and a knowledge graph for instance
— Extended Euclidean data
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1. GRAPHS: Definitions & representations



Questions?

e What is a Graph?



Definition of « Graph » ?




Definitions

Initial definition
« A graph is a set of vertices linked by edges.
* Formally speaking:

A graph is an ordered pair G = (V, E) where,

« Vis the vertex sef whose elements are the vertices, or nodes of the graph. This set is often denoted V(G)
or just V.

« E is the edge set whose elements are the edges, or connections between vertices, of the graph. This set is
often denoted E(G) or just E. If the graph is undirected, individual edges are unordered pairs {u, v}
where u and v are vertices in V. If the graph is directed, edges are ordered pairs (u, v).

Two graphs G and H are considered equal when V(G) = V(H) and E(G) = E(H).

The order of a graph is the number of vertices in it, usually denoted | V| or |G| or sometimes n. The size of a
graph is the number of edges in it, denoted | E| or || G||, or sometimes m. If n = 0 and m = 0, the graph is
called empty or null. If n = 1 and m = 0, the graph is considered trivial. If 1 < n and m = 0, the graph is
called discrete.

A simple o
undirected graph with
three vertices and
three edges. Each
vertex has degree
two, so this is also a
regular graph.



Adding labels and attributes

- Updating the initial definition...

Let Ly and Lg denote the set of node and edge labels, respectively.
A labeled graph G is a 4-tuple G = (V, E, u,&) , where

@ V is the set of nodes,
@ EC V x V is the set of edges
@ iu:V — Ly is a function assigning labels to the nodes, and

@ £: E — Lg is a function assigning labels to the edges.

o Let Gy = (W4, E1, 1, &) be the source graph
o And G = (Vo Ea, 2, &2) the target graph
o With Vi = (u1,...,up) and Vo = (vy, ..., vpy) respectively



Questions?

e Many complex or/and large graphs

e How to represent such graphs in computer?



Which data type?

Adjacency matrix

vertices/nodes

Undirected Graph G(V, E)
sub-matrix of A = a subgraph of G
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Which data type?

Degree matrix
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Normalized Adjacency matrix A = D14 is a stochastic ma-
trix (each row sums to one)




Which data type?
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Laplacian Matrix

Normalized version



Which data type?

How graphs are represented in computer memory?

e |ncidence matrix
e1 626364 eses_

000011
100111
I=1110000
011000
001001

e Adjacency list

2
2D

135
A=321
435

5124




Questions?

b

Matrix representation?

e List representations?

0 12 3 4

0 1 0 1 0
0 1 1 0 1

Y Y Y ¥ ¥

1 4
0 4
1 = 3|/
1 4
3 0
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Adjacency matrix Adjacency list

v' Easy to implement v' Take less space: O(|V[+|E|)
v Removing an edge takes O(1) time v Adding a vertex is easy
v" Check (u->v) edge existence in O(1) time
x Check (u->v) edge existence in

x Memory consumption more complex !
In O(V) at work case scenario

n U] RAM

10,000 | 399,960,000 | ~ 400Mo

50,000 | 9,999.800,000 | =~ 10Go

100,000 | 39,999.600,000 | ~ 40Go

500,000 | 999,998,000,000 | =~ 1To




graph [

‘Text’ example : GML

<?xml version="1.0"?>

comment "This is a sample graph" <grlz
directed 1 <grapn>
id naz <node id="0"> A
label "Hello, I am a graph” <attr naEEj"x"><Integer>&74<!Integer><!attr>
<attr name="y"><Integer>19</Integer></attr>
node [ L <attr name="type"><String>corner</String></attr>
id 1 </node>
label "node 1" cnode id="ims
thisIsASampledttribute 42 <attr name="x"><Integer>4l</Integer></attr>
] <attr name="y"><Integer>447</Integer></attr>
node [ <attr name="type"><String>corner</String></attr>
id 2 </node>
label "node 2" <node id="2">
thisIsASsampleAttribute 43 <attr name="x"><Integer>44</Integer></attr>
1 <attr name="y"><Integer>494</Integer></attr>
node [ <attr name="type"><String>corner</String></attr>
id 3 </node>
label "node 3" <node id="3">
thisIsASampleAttribute 44 <attr name="x"><Integer>475</Integer></attr>
<attr name="y"><Integer>437</Integer></attr>
]d <attr name="type"><Stringrintersection</String></attr>
edge [ </node>
source 1 <edge from="0" to="1">
tanEt 2 <attr name="fregquency"><Integer>l</Integer></attr>
label "Edge from node 1 to node 2" <attr name="typel"><String>line</String></attr>
] <attr name="angleO"><String>-.00</String></attr>
edge [ </edge>
source 2 <edge from="0" to="2">
target 3 <attr name="frequency"><Integer>l</Integer><Sattr>
label "Edge from node 2 to node 3" “attr name="typel"><String>line</String></attr>
] <attr name="anglel"><String>l.56</String></attr>
edge [ «</edge>
source 3 <edge from="1" to="3">
tanEt 1 <attr name="fregquency"><Integer>l</Integer></attr>
label "Edge from node 3 to node 1" <attr name="typel"><String>line</String></attr>
] <attr name="anglel"><String>-.79</String></attr>
</edge>
</graph>

</gxl>



Graphs : A powerful representation tool ...

Typical examples ?

How ? Why ?

Advantages ?

Drawbacks ?

18
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Graphs : A powerful representation tool ...

Topology 1
— Nodes = primitives, elements, parts
— Edges = relations L ' ’
Attributes
— Statistical : observations, distributions, ...
— Geometrical : metrics (distances, angles, similarities)

— Positions ; absolutes or relatives
— Visual features : discriminative elements

Trying to ensure

— Stability (invariance)

— Tolerance : noises, variations
— Classes discrimination

But

— Symbolic VS numerical
— Discretisation
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Socilal networks

Facebookl100 data set

"People and friendships from the Facebook
networks of 100 different colleges and
universities from a single snapshot from

September 2005.”

Everyone can be a media outlet

Disappearing of communications barrier

Rich User Interaction
User-Generated Contents
User Enriched Contents
User developed widgets
Collaborative environment
Collective Wisdom

Long Tall
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Filter, then Publish
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UNC Chapel Hill (18163 Nodes, 766,800 Edges)
displayed with Tulip by David Auber (2011)



Graph in chemioinformatics

Structure: Thiamine (Vitamin B1)

implicit
hydrogens

Molecular graphs
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explicit
hydrogens

abstraction

graph =
a set of dots
& lines

molecular graph;/is’(or nodes &

edges)
® Hydrogen
©  GCarbon
Q  Cxygen
O Nitrogen
®  Sulfur

single bond
double bond



Graph of pixels
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Region Adjacency Graph

Bn

b
nREnEN | a
e L

Region Adjacency Graph

Low Weight
B Moderate Weight
High Weight
The above is just an approximation drawn
visually. The RAG wasn't computed by any
algorithm.




Region Adjacency Graph
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Impact of noise on Graph-Based Representation

=> Description




Interest Point Graph

W Zelionay

Node = Keypoints <=

—

S e *
.
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Edges = distances
between Keypoints

Many other
possibilities
—  Similarities

— Angles




Skeleton Graph
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Spatial relationship graph




Graph Databases

 OPEN GRAPH BENCHMARK O GB

* TORCH_GEOMETRIC.DATASETS

 IAM Graph Database Repository

for Graph Based Pattern Recognition and Machine
Learning” (2008)



https://ogb.stanford.edu/
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.htML
https://iapr-tc15.greyc.fr/links.html#Benchmarking%20and%20data%20sets

Graphs for PR and Mining

Graph-based problems

» Graph analysis / Graph Mining

* Link prediction

* Vertex classification/clustering/regression
» Graph classification/clustering/regression
« Graph matching

* Graph distance What does it mean ?
» Graph-based search

» Subgraph search
 Similarity search

» Graph prototypes - Median graphs




Graph-based problems

» Graph analysis / Graph Mining

* Link prediction

* Vertex classification/clustering/regression
» Graph classification/clustering/regression

« Graph matching
» Graph distance

» Graph-based search

» Subgraph search
 Similarity search

» Graph prototypes - Median graphs

Graph matching

&3 a &
3

Graphs for PR and Mining

Graph classification

1. cancerous or u | e

not cancerous ~/ ! /
R AU

molecules /oo =N
\
\_

. determination /
of the boiling AR gl
point : I

Molecular graph

Vertex classification
age
3 ' gender
h R ¥ education
a work

Social network

Semantic image segmentation

® ;é

Social netwpork

tree

motorcycle

Semantic image segmentation



Graphs for PR and Mining

Graph-based problems Graph distance
» Graph analysis / Graph Mining o
* Link prediction
* Vertex classification/clustering/regression
» Graph classification/clustering/regression
» Graph matching
» Graph distance
» Graph-based search »- i

- Subgraph search Graph similarity search
 Similarity search
» Graph prototypes - Median graphs

How similar are
theses graphs ?

Graph-based search

.;: ‘t.«:“ *f@@ ol & @
@ Given a graph database consisting of n graphs, N P (3 & (@ @
D =gl,g2,....gn, and a query graph g, almost all existing @ 5/. ‘Q a @@ ® ® ()
:I:geo;;tllron‘:’sinof ‘!:)rocesslng 5raPh search can be classified into ‘ e % .‘. 9O @ ® ® ® @
g four categories: Full graph search, Subgraph L L .
search, Similarity search and Graph mining. T — — ‘\(aj) @ ....

@ Full graph search. Find all graphs gi in D s.t. gi is the same
as q.

@ Subgraph search. Find all graphs gi in D containing g or
contained by g.

@ Similarity search. Find all graphs gi in D s.t. gi is similar to
g within a user-specified threshold based on some similarity
measures.

© Graph mining Graph mining problem gathers similar graph or
subgraph of D in order to find clusters or prototypes. No
query is provided by the user.

i



How to solve these problems?

Staying in the Graph space
« Graph matching
« Combinatorial problems (NP Hard)

Graph embedding G — R"

* Embedded of graphs/ nodes edges into a vector space
 Explicit embedding
* Through feature extraction
(handcrafted or end to end learning ) or dissimilarities
* Implicit embedding
* Through graph kernel

=» Modelisation, PR, Machine learning, Optimization



« Graph clustering

 finding sets of “related” vertices in
graphs
e graph partitioning

* Graph clustering

« clustering of sets of graphs based on
structural similarity
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2. Graph characterization (1 big graph)



Graph depictions

2 ¢ |12 ]34 |5 [6 |7 [8 |9 1011 1213
0 Eloc + + 1 o o o 1 1 0 0 0 O
5 19 Ell: o o o 1 o0 o o 0 0 0 0 O
Ell: o o o o o o o 0o 0 0 0 O

13

Qa- _;::F-l " _I' 2 B
L - . I. ' I I I .I...

] T .| |'.. '

Figure 1 Two visualizations of the same undirected graph containing 50 vertices and 400 edges.



Graph depictions

— The order of the graph G, n = |V|
— The size of the graph G, m = |E|

— A graph is planar if it can be drawn in a plane
without any of the edges crossing

— A graph of density 1 is called complete

— The density of the graph G,

* Uniform random graphs (Gilbert model)
n

— With n vertices, each of the (2

)possible edges is included in the
graph with probability p

n.(n-1)/2



Graph drawing: Node-diagram

Fig. 2 - Two graphs both of which have 84 vertices and 358 edges. The graph on the left is a uniform random graph of the
%n.m model [84,85] and the graph on the right has a relaxed caveman structure [228]. Both graphs were drawn with
spring-force visualization [203].



Node-diagram

Fig. 2 - Two graphs both of which have 84 vertices and 358 edges. The graph on the left is a uniform random graph of the
%n.m model [84,85] and the graph on the right has a relaxed caveman structure [228]. Both graphs were drawn with

spring-force visualization [203]. \




Matrix representation
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Fig. 1 - The adjacency matrix of a 210-vertex graph with 1505 edges composed of 17 dense clusters. On the left, the
vertices are ordered randomly and the graph structure can hardly be observed. On the right, the vertex ordering is by cluster
and the 17-cluster structure is evident. Each black dot corresponds to an element of the adjacency matrix that has the value
one, the white areas correspond to elements with the value zero.



Matrix representation

Fig. 1 - The adjacency matrix of a 210-vertex graph with 1505 edges composed of 17 dense clusters. On the left, the
vertices are ordered randomly and the graph structure can hardly be observed. On the right, the vertex ordering is by cluster
and the 17-cluster structure is evident. Each black dot corresponds to an element of the adjacency matrix that has the value
one, the white areas correspond to elements with the value zero.



Influence Study

Centrality Analysis

* Node centrality: number of shortest paths including this node

« Edge-Betweenness: Number of shortest paths between any
pair of nodes that pass through the edge

» To identify the most important “actors” in a social network -
Given a graph, output a list of top-ranking nodes or edges

« Ratio formulation:

g, ,(v)

bC(V) — Z.s‘:&riv EEEAAS

s.tel”
O'”

o, (v) :number of paths from node s to t
that include node v

O,, :total number of pathsfromstot
(Nodes resized by
Importance)



Node Prediction

Prediction =» Node classification

2
Predictions 11 /

6: Non-Smoking
® : Smoking 7: Non-Smoking
® : Non-Smoking 8: Smoking
® : ? Unknown 9: Non-Smoking

10: Smoking

~~— ] Notion of node signature ?



From Node prediction to Sub-graph Spotting

Drawing = Graph = Symbol detection ?

- L |
T |

o N Can you imagine some features /
signhatures ?

43



From Node prediction to Sub-graph Spotting

Drawing =» Graph = Symbol detection ?

A first draft = Using heuristics

To associate score to the nodes and edges

« H1 - Symbols are composed of small segments
compared to the other parts

« H2 - Segments inside a symbol are of similar
length

 H3 - Symbols can correspond to loops

 H4 — Symbols can correspond to parallel
segments

 H5 - Segments inside symbols are connected to
maximum 3 other segment

 H6 — Two segments with 90° usually correspond
to a symbol

Using Machine Learning
- the new “heuristic free” approach...

- Node / Graph embedding

44



Region Spotting with graphs

Score Propagation

\

(a) Initial scores

(b) score propagation inside loops =» 0.7 has been propagated

45



Region Spotting with graphs

Extraction of Rol / sub-graphs using the scores

é é .: scoresde 104 07
.= scores de 0.7 & 0.6
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Region Spotting with graphs

Experimentations on different types of documents
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3. Graph partitioning (community detection)



Community detection

3
No universally accepted definition for “community”

4
* Members within a community are more similar among : K\_X
each other 5 / 10
« Communities correspond to densely connected nodes: \& 12
Set of nodes with more connections between its members, / "
7

than to the rest of the network

« A community corresponds to a group of nodes with more

intra-cluster edges than inter-clusters edges 1

(Nodes colored by
Community Membership)

So, detection methods can be divided into several categories:
— Node-Centric Community = Each node in a group satisfies certain properties

— Group-Centric Community - Partition the whole network into several disjoint sets -
Consider the connections within a group as a whole. The group has to satisfy certain
properties without zooming into node-level

— Hierarchy-Centric Community - Construct a hierarchical structure of communities



Evaluation metrics

e Focuson:

« Intra-cluster edge density (number of edges within community)
* Inter-cluster edge density (number of edges across communities)
« Both two criteria

) MNotations
Intra Cluster Density y —
# internal edges of C E set of edges
6int(c) — .
ne(ne —1)/2 n V|
Inter Cluster Density m IE]
gt lust q fC A subset of V
1nter-ciuster eages o
Oeat(C) = = |
ne(n —n)
maximum number of inter-cluster edges possible Max number of edge inside C

Etienne Cuvelier, Marie-Aude Aufaure. Graph Mining and Communities Detection. Aufaure, MarieAude; Zimanyi, Esteban. First European Summer School, eBISS 2011,
Paris, France, July 3-8, 2011, Tutorial Lectures, Springer, pp.117-138, 2012, Lecture Notes in Business Information Processing. ffhal-00704356f



Node-Centric Community Detection

Node similarity is defined by how similar their interaction patterns are.

« Two nodes are structurally equivalent if they connect to the same set of actors
- e.g., hodes 8 and 9 are structurally equivalent

| |1 2 [3 [4 [5 [6 [7 |8 |9 [10 [11[12]13
a vector ‘ﬂ 1 1 |
structurally ﬂ L L L
equivalent ﬂ 1 1 1

For practical use with huge graphs:
« Consider the connections as features
« Use Cosine or Jaccard similarity to compute vertex similarity
» Apply classical k-means clustering Algorithm

Cosine Similarity: similarity = cos(f) = H:H”Jt;”
sim(5,8) = L _ 1L
V2x3 Ve
ANB
Jaccard Similarity: J(A, B) = {48 BI. 7

J(58)=a==1/4 "

{1,2.6.13}



Node-Centric Community Detection

Multi-Dimensional Scaling (MDS) — Spectral methods (“ACP-like method”)

Given a Graph, construct a proximity matrix to denote the distance between nodes

A(D) denotes the square distance matrix between nodes

N\ =diag(A, A,,...,A) = the top-k eigenvalues of A(D) and V = the top-k eigenvectors of A(D)
S € R ™k denotes the coordinates of nodes in the lower-dimensional space

MDS objective - minimize the difference min || A(D) - S.ST ||

MDS solution > S = VA/?
Apply k-means to S
to obtain clusters

3

-1.22| -0.12
-0.88| -0.39
-2.12| -0.29
-1.01] 1.07]
0.43] -0.28|

MDS 0.78| 0.04

- 1.81] 0.02

-0.09| -0.77|
-0.09| -0.77|
0.30[ 1.18|
2.85| 0.00;
-0.47| 2.13
-0.29| -1.81

9 10 11 12 13|
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Node-Centric Community Detection

Ascendant Hierarchical
Classification of the nodes

— Each node = 1 community

— Compute distances between
communities

— Merge most similar.

— Go to Point 2.

@gé

%ill@@@@ ®

wo®



Hierarchy-Centric Community Detection

Goal: Build a hierarchical structure of communities based
on graph topology

Facilitate the analysis at different resolutions
Representative Approaches:

 Divisive Hierarchical Clustering

» Agglomerative Hierarchical Clustering

Divisive Hierarchical Clustering

Partition the nodes into several sets

Each set is further partitioned into smaller sets
Between-group edges tend to have larger
edge-betweenness

Agglomerative Hierarchical Clustering

Similar to node-centric methods

Progressively remove edges with

the highest betweenness
Remove e(2 4) e(3 5)
Remove e(4,6), e(5,6)
Remove e(1,2), e(2,3), e(3,1)

A 4

CrootD \

QD 2 3D Qo G e



Hierarchical method: Newman-Girvan algorithm

B Newman-Girvan algorithm [Newman and Girvan ‘04]

® A divisive algorithm (detect and remove edges that connect vertices of
different communities)

® |dea: try to identify the edges of the graph that are most between other
vertices =2 responsible for connecting many node pairs

® Select and remove edges based to the value of betweenness

® Betweennes ( edges ) : number of shortest paths between every pair of
nodes, that pass through an edge

Edge betweenness is
higher for edges that
connect different

communities r




Hierarchical Method: Newman-Girvan algorithm

Algorithm
1. Compute betweenness (edge centrality) for all edges in the
graph

2. Find and remove the edge with the highest score
3. Recalculate betweenness centrality score for the remaining

edges
4. Gotostep 2 Step 1: Step 2:
© (10)
) E&@
Stopping criteria - modularity @ Q)
- Complexity » O(mz2n) G
. s %
Step 3: Hierarchical network decomposition:
©)
o © L ®
@
© © & ®




Group-centric: Modularity Maximization

Modularity measures the group interactions compared with the expected random
connections in the group (the community_have to be detected beforehand)

N\

Ajj: adjacency matrix (value(i,j))
\ ki: degree of node i

¢;; community of node i

m
N\ 6(c,c) = 1ifi, j belong to the same community
Qbserved num_ber B Expected number of edges m: number of edges on the graph
intra-community edges. between i and j, if edges are

placed randomly.

In a Graph with m edges, for 2 nodes with degree Kki

and kj , the expected random connections probability
between them are :

ki.kj / 2.m

Expected probability of edge
presence between 6 and 9 is
5x3/(2x17)




Modularity Maximization

In a random graph (ER model), we expect that any possible partition would
lead to Q = 0.

Typically, in non-random graphs modularity takes values between 0.3 and 0.7.

N clear community
i structure

%,
e
i s,
o s,
e
.
*

Good partitioning

Not Good partitioning




Modularity Maximization

Modularity measures the group interactions compared with the expected random

connections in the group
To partition the graph into optimal communities, we should maximize the modularity

2m

=>» The problem is the time complexity to find this maximum (without testing all the
possibilities) Q moss

k.
Max —Z(A L)S(c,.c,)
2m ij
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Louvain modularity algorithm

Before, the modularity is just used as a threshold (stop criteria)
* Issue(s) = Empirical value/threshold !

Better idea(s)?

- Find the partition that corresponds to the maximum value of modularity
- Modularity optimisation problem

But:

Modularity optimisation problem = NP-complex = Approximation
techniques & heuristics



Louvain modularity algorithm

Louvain (2008) run in O(n.log n)

Algo:

1.
2.

Each node i is a cluster

For each node i, move it into the
community of each neighbour j and
compute the modularity change

Assign i to the neighbour j that
yields the greatest modularity
Increase

Repeat until modularity local
maximum is achieved = Level |

Build new network by merging
nodes from the same communities

Gotostep 1

O NOU0h h WM —= O

> ¢[3]
-> c[4]
->c[1,4]
> ¢[0]
->c[1]
-> 7]
->[11]
-> ¢[5]
-> c[15]
->c[12]

-> ¢[13]
->¢[10,13]
-> ¢[9]
->¢[10,11]
-> ¢[9,12]
-> ¢[8]



Louvain modularity algorithm

Louvain (2008) run in O(n log n)
Algo:
1. Eachnodeiis a cluster

2. For each node i, move it
Into the community of each
neighbour j and compute
the modularity change

3. Assign i to the neighbour |
that yields the greatest

modularity increase CELEEY

4. Repeat until modularity local
maximum is achieved = Level |

5. Build new network by merging
nodes from the same communities

6. Gotostepl




Louvain modularity algorithm

The “limit of resolution” of the modularity
Shown on a ring of n cliques with m nodes in each

For m=5 and n=30, the modularity is higher for the
partition with 2 cligues merged together (Q=0.888)
than the one with n groups (Q=0.876).

It shows that with this method some interesting
communities could be missed




Local methods

U: unexplored portion of graph

More often, we cannot have access to the whole graph
=>» local methods are needed

« Starts from a set of nodes (seeds)

« Expands the community boundaries using some criterion
to stop (impossible to increase modularity)

* Local modularity or Subgraph modularity (M)

B: community boundary

-

'
. ’ -~ ~
' .

. . . .
C: “inside” part of community

ind(S)

ind(S): in-degree of subgraph §
outd(S): out-degree of subgraph §

(a) M(S) =1.429

10/7

12/5




Challenges?




Challenges?

« Large graphs : complexity

« Known number of clusters?

* Directed graphs

* Overlapping clusters




4. Graphs for Pattern recognition (several graphs)




A recall about PR mechanisms ?

Pattern / Object recognition (toward Machine Learning)

How computers can recognize objects?

* We need a large set of (labelled) examples similar to the patterns to be recognized = a
training set

 We need a list of stable and discriminative features (shape, color, size,...) used to describe
the patterns (labelled ones and unknown one)

................................................. \ e et e e e e e e e [ZDRepresentathn -
v=(0,3,0,4,12,4,3,0,3) V=(6,10,0,12,4,0,10,10,0) 1 % : of the training set]

1 . N

; ! :

; i ! Xy

i ! e/

; ! 7

: ! g

| : :

| : :

; i !

; i | = B

. 1 ‘ \\

: A ) ! E \

i o i E !

I [ Trainingset] -.-.-.- : . E
PSP : ; 3 AL = E/,'; Stable and
! \; ’ ! - Rk S ~ discriminative
: f l . : / . € : features
.1 EoC = 1 Vecteur Xx=| ““ & fR--------______ ! X A
; s | Tl 1 A ,
i 1y i ! 20 " 40 ' 60 ' 80 g

1 X2



A recall about PR mechanisms

Pattern / Object recognition (toward Machine Learning)

How computers can recognize objects?
« When an unknown Object arrives, we compute its features and compare it with the

content of the training set (associated built models)

#v 0,1005.14,5,30.2)

e R R R R [ 2D Representatlon -

~ -

F'S \ i .. !
A : X Y L T ‘ of the training set]
R g BN o 0 ,, :
000000000000 V=(6, 1.0 ,0,12,4,0,10,10,0) \\\ I Il, \.A\. 'I‘ I
| S Y’ ! * “ 1
V\\ I ' \\\ & X / T ; 1
\\\ Forme inconnue | X\\ -.\.\‘»J "..\ ',"‘1 ]" X
\\\ : | : \\\\ ) C E }‘ :
\\\ EREis : \\\ \\"\ G C E E :

s ! ~ e N

\\ V=(0,10,0,5,14,5,3,0,2) ~ : \.

N I SO (8 I
™ " : " Fa N 2 .
| / B NC :
- > | X _—.-i""\A 1
D(A,7)=4/(0—0R2+(3-102+(0— 0 (a-52+..+(3-22| ; [ ____.=--- A |
N -T’ = | .40 T T > :

-
-
-
-
-
-

D(A,7) = 7,48 et D(B,7) = 19,05 *» PO SOOI :




A recall about PR mechanisms

Deep Learning (Conv. Neural Net)

[kt

B
<

=]

m

“&

128 \{f e R
ANEAATA
Ul o] et
al

152 128 Max - .|
Max pooling  <%® i
-ErTm‘-. F{:‘-ﬂ"m‘] - pooling
3 T
C, S C, S; m, n;
mput feature maps  feature maps feature maps feature maps output
32x32 28x 28 14x 14 10x 10 5x35

- . - 3 \ N R
N\ i” 1A ; ’ ! \\\ \\.\ \\ N N .
B : 7—-;.' 2 \‘\ \ ."‘.\m 9

5x5 5 Y
convolution \ subsampling convolution 2x2 \\
subsamphing \\ connected .
feature extraction classification

pd
L4N




A recall about PR mechanisms

Many possible choices and techniques
» For selection of discriminative features

1 Object = 1 Vector

1 Object =» 1 Graph

« Many Machine Learning models and tools

ACID

nACtﬂD EAC(D a a

Statistique suffisante

Performance
du classifieur

» Taille de la base
d'apprentissage
Malédiction de la dimensionalite

Performance
du classifieur

Nombre de
1 P 100 .. caractéristiques

Complexité vs nombre de caractéristiques

Complexité
. Nombre de
Nombre de classes caracteristiques
Performance

du classifieur

Nombre de classes

»
>

2 50 100 ...




Why using graphs?

e Statistical Methods
— Classes and frontiers

— Existing statistical tools for evaluation
of the quality of the chosen feature
space

— S0 many models and toolbox

« Structural Methods
— Taking into account the context

— A matching between sub-parts as A ] ]
results in addition to the decision B e et e @ .

i I . * ‘; el liche vatichel lere.
— Partial or incremental recognition

:4 s retlent fich v mates
¢ qeliche fute genant:

— Adaptive dimensionality of the female , horse
models @ ‘5\ :
— Multimodal Features ”f\ { ™

/ Y \'\ ji } I
A 74
— Computational limitations? f£ > 528

- L earn I n g ’) l:iccmlop ,: !}l '
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Structural PR =» Graph Matching

 Definition (Matching)
« A matching between G1 = (V1;E1l) and G2 = (V2;E2)
« —arelationmcV1xV2(Uul;u2) em
« = The vertex ul is matched with the vertex u2

 Different types of matching
 Bijective matching : cardinality = (1; 1)
* Injective matching : cardinality = (1; 0..1)
« Univogue matching : cardinality = (0..1; 0..1)

- Multivoque matching : cardinality = (0..|V2[; 0..[V1]) 4= What does it mean?

« High Complexity = Toward approximative methods !

[Solnon, 2007]




Structural PR = Graph matching

Taking care of the attributes in addition to the graph topology

Graph Matching

(n p—
.% — Exact Méthods
15
é - — Exact Matching — Isomorphisms between graphs
© .
G —) ) _, Sub-graph Isomorphisms
S Incomplet Matching Maximum common su-graph
—p
—»  Inexact Methods
Distances/Similarities between graphs R Graph Edit Distance,
— _ + Algorithms Glouton, Tabou
_ Inexact Matchings

Graph Embedding
'—>| Distances / Similarities only — Graph Probing

Soft Constraints




Structural PR =» Graph Matching

Univogques Matching — Hard Constraints

Graph isomorphism problem Sub-gtaph isomorphism

B’
Model Graph G, Test Graph Gp
Test Graph Gp Model Graph G,,

Obiecitive_ _ Objective

Bijective Matching Injective Matching

Hard Constraints Hard Constraints

Possible on huge graphs NP-complete
Problem Problem

Not robust to noise and distorsions Possible on medium size graphs



Structural PR = Graph matching

76

Tree search Algorithms (with backtrack)




Structural PR =» Graph matching

Tree search Algorithms (with forward checking)

a 1
2 b /
1> Forward 4
e a 3 backtracking
G 4
l 2
G"
4 a a 1 3 4
Rl 2 2
) b 4 3

\a3

A look-ahead() checks before each association, the existence of a
possible matching at the next step (using edge information for instance)



Structural PR = Graph matching

Univoque Matching — Hard Constraints
TOO HARD...

-

ArchitecturalH, BMP Irnaged3.brp

=Rl



b. Inexact matching

(aka. Error-tolerant matching)



b. Inexact matching

* Optimal vs. suboptimal
— Optimal

* If It exists, the global minimum of the matching cost is
given as the solution

— Suboptimal (approximate)
* Find a local minimum of the matching cost.

« Might be not very far from the global one, but there are
no guarantees.

« Shorter, usually polynomial, matching time.
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Structural PR =» Inexact Graph Matching

Univoque Matching — SOFT Constraints
m  Soft Constraints Feped

Etape-6 Etape-3 Et'ape—l
= Notion of similarity # Exact matching TR T T TS

.. ) ) 1,00 | 1,00 0,99 [0,97] 0,95 0,12 [ 0,12
= Similarity Matrix between nodes & edges

1,00 [100 ] 1,00] 0} 0g7 | das] 042 {042
051|051 |05 | 052| 0,54 0,56 | 0,61 [ 0,61
051|051 | 01| 052|054 | 056] 01 051 |-~
0,98 |0,95 |093| 099|039 | 097 | 0,14 [po14
0,08 | 0,05 |0,08| 0,09| 041|013 | 098 | 0,96 _. Etaped
0,08 (003 |0pg| 009|011 0413| 098 |oEs]™”

(0, Al /
{Score : 1.007

N\ Heuristics ®

{3 Cl (3D
* [Seore : 1,99]

7™\

(4. F) 14 G)
[Score : 2,957 x

{3, GJ
[Score : 3,91]

_ Etape-3

W | | P | = | =

m Exploration of possibilities...
Very time consuming...

&
. 3 % [Seore : 6,407 [Seare : 7,39]
% &
&
{ //\
(2, B) (2. E)

[Scare : 9,86 [Secore : 8,22}



b. Inexact matching

Graph Edit Distance (GED) [Bunke,1999]

The minimum amount of distortion that is needed to transform Gj
into Go
@ Distortions s;: deletions, insertions, substitutions of nodes and
edges.
e Edit path § = s;, ..., s,: A sequence of edit operations that
transforms Gj into Go.
@ Cost functions: Measuring the strength of a given distortion.
e Edit distance d(Gi, G2): Minimum cost edit path between two
graphs.
Problem of Edit Distance: NP complete
@ Explore the space of all possible mappings of the nodes and
edges of G; to the nodes and edges of Go.

@ Edit Distance computation also has a worst case exponential
complexity which prevents its use in large datasets.
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Structural PR =» Inexact Graph matching

Univoque Matching — Soft constrainsts

Cost : associated to transformations (Insertion, suppression, substitution
of edges and nodes)

Edit Path : set of needed transformations to obtain G2 from G1 \
Global Error : Sum of all the elementary costs
Objective : Search for the minimal cost edit path C@?

Let Gl — (VlaElaLvlaLElvlLlaCl) and G2 — (V27E27LV27LE27I’L27C2) be two
graphs, the graph edit distance between G; and G5 is defined as:

: k
dp!af'n(gm: gt) = MiNg, ... e ev(g1,22) Zf:l C(ef)

- ole D S T S



GM/GED as an optimization problem

« Assignment problem - Mathematical Programming = Hungarian
algorithm, LSAP, QAP,

Edit operation Variable | Cost €L,1 €1,2 " ELm €l OO o0
Substitution of vertex i by vertex k Ti Cik €21 €32 - Czm| 00 C2

Deletion of vertex i u; Cie : o ‘

Insertion of vetex k Uk Ce k | ) >

Substitution of edge 7 by edge ki Yijkl | Cijkl C - | (’“:2 r = = ne

Deletion of edge 7j €ij Cij.e ol v v
Insertion of edge ki fri Ce kl 00 €2 6 0

: so | 1T 0

Objective function: 00+t 00 Con 0 00

Xi, = 1
[(X y,u,v,ef) ( c(i, k) - Tik - Vertex substitutions ~
@ / \
+ Z Z c(ig, }“r) Yij.kl > Edge substitutions yU kl_l \_/

ijelh klelks

3 elive)ui+ Y e

ik

- Up > Vertex U
insertions/deletions

icv, kEVs m
CY et et Y e w-u)%dge @
ij €k, kleE2 deletions/insertions - - x]l _

Figure credit: Riesen and Bunke IVC 2009

From [HDR Raveaux2019]



GM = ILP (F1 formulation)

deletion substitutions
' _ F1
U; + E Tik — 1 Vie VW
Vertices ke, min d(x,y.u,v,e,f)
mapping - Insertion x,y.uv,ef
constraints Vi + E i =1 Vkels
i€V, subject to  u; + Z rr=1 ¥Viel
deletion substitutions REVa
B e+ Y mip=1 YkeV,
€;; + E Yij kl = 1 Yig € B, eV,
Edges kle Es ..
mapping eij + Z Yijkl =1 Vij € By
constraints fr + E , Yij ki = 1 Vkl € Fs kleEa
X R v
Insertion W& En fr + Z Yijt =1 vkl € Es
ijeE
Yiikl < xik  V(ij, kl) € By x Es
If yii k) = 1 then x; x must be set to 1 .
- S ik T Yijhet = 1 V(ij,kl) € Eq x Eq

Gi .. G with 2, € {0,1} V(i,k) e V; x V},

@ @ ik <Tip V(ij,kl) € By x Ey ik € 10,1} V(ij, kl) € Ey x Es
u; € 0,1} VieV,
i Kk v € {0,1} VkeV,
e;; €1{0,1} Vije E,
@ @ Yijet < i1 V(ij, kl) € Ex X By fr € {0,1} VYkleE,

From [HDR Raveaux2019]



Structural PR =» Inexact Graph Matching

Multivoque Matching — Soft constrainsts

Evoluted version of the Graph Edit distance

Univogque Matching = each node of G1 can be matched
with only one node of G2

New version of GED with additional possible transformations

MERGE & SPLIT -> Multivoque Matching ...

—— s

11— A
2— B
5— E
6~ E

[Champin / Solnon] (2003-2005)



Structural PR = Inexact Graph Matching

Multivoque Matching — Soft constrainsts

Problem : Definition of the similarity measure and edit costs [Qureshi03]

SCyp =

2

m

=4

1

:]_(

J

Node to Node
similarity

Y

J

Y

Edge to Edge
similarity

\

—AVi)+Zn:(1—AEj)— Zk:a)i +
j=1 i=1
\

14

2

j=1

!
W

J

Y

Penalties for multiple

Matching Exploration - a very combinatory problem !

Goal = Finding m <V, x V, maximising
score(m) = f (G; N, G,) - g(splits(m))
Problem NP-difficile > 2/V1lIV2l combinaisons

Résolution by a complete search ?

Structuring the search space with lattices...
...but the score function is not monotonous....

Limited to very small graphs (10 nodes)

matchings (splits)



Exemple on Letters

Graph Matching with GED ?

Cost Function ?

88



Structural PR = ML = Graph Comparison

Graph Probing and Embedding

From graph space back to Vector space...
=»The node to node matching is lost !

Information extraction by feature selection - Construction of a feature vector:

@ :G>R" => @g)= (X...., Xn)
Combination of structural and statistical approaches

DOMAINE DES GRAPHES DOMAINE DES VECTEURS

—

1R
B 4 )

What does it mean?

89



Structural PR = Graph Comparison

Embedding topological information [Sidere09]

Example

M

“ o

* *
’

g
._ 0

o p'\ \ b.\A""""PA

vy

Patterns enumeration

Graphe sans étiquette G

=

Graphe avec attributs

P

» Lexicon of Topological patterns

Pattern

Freq.

Al, corner

A2 comer

A3, comer

Al, endpoint

A2, endpoint

A3, endpoint

X1,YI

X1,Y2

X2,Y1

X2,Y2

»(9)= (Xy,...,

* Frequency of the patterns = Construction of a vector

* Many possible extensions : Graphlet, Treelet, ...

oo == OO O ) e

ca-—c:m-—mc:a:::::-h.p.I

DMGQM#GGEGM{

DHDMMMQDG-&NI

Trying to take care of attributes = Construction of a Matrix =» discrétisation

D-::M:;?-D:::c::-m-—?

I
2
0
0
0
1
1
2
0
1
0

xn) = (4,4,5,2,1,1)



Structural PR = Graph Comparison

Fuzzy multi-level Graph Embedding [Lugman13]

Trying to embbed topological and statistical information

Graph Level Information
[macro scale]

Structural Level Information
[intermediate scale]

Symbole
graphique Vectorisé Graphe relationnel attribué
Elementary Level
Information
[micro
scale
D)= (xs-..., x0) |
Graph Graph Fuzzy Fuzzy Crisp Fuzzy Crisp Fuzzy Crisp
order size histogram | histograms of histograms of | histograms histograms histograms | histograms of
of node numeric symbolic of numeric of symbolic of numeric symbolic
degrees resemblance resemblance node node edge edge

attributes attributes attributes attributes attributes attributes




Structural PR = Graph Comparison

Fuzzy multi-level Graph Embedding [Lugmanl13]

Adding local topology information

Ressemblance Degree on node attributes
Ressemblance Degree on edge attributes

Fuzzy embedding
Frequency Histogram
Fuzzy transformation

' Grand
olg PJeEV[ a
a, a a,
b, \b/ b
MY
- oyen
_ o ~ min(|a,|,|a,|)
numeric resemolance = Dégree d’appartenance = contribution d’une primitive
max(‘ai"‘az‘) 1
Petit Moyen Grand
. 1 if b=b 1 <
symbolic resemblance = . 0 s >< .
0 otherwise | | | >
n 1,° 1, 1,¢
P0)= (x,...., xn)
Graph Graph Fuzzy Fuzzy Crisp Fuzzy Crisp Fuzzy Crisp
order size histogram | histograms of | histograms of | histograms histograms histograms | histograms of
of node numeric symbolic of numeric of symbolic of numeric symbolic
degrees resemblance resemblance node node edge edge
attributes attributes attributes attributes attributes attributes

= Notion of node signature



Graph Comparison = Graph Kernel

A kernel

Let define a kernel &k : X x A — R between two objects z and 2" corresponds to a scalar product
between two projections ¢(x) and ¢(z") in a Hilbert space H.

Scalar product
Y(z,2') e X x X, k(r,2') =< ¢(x),0(x') >

In order to define a valid kernel, it is not necessary to explicitly define the projection function
¢: X —+ H. However, the kernel k must verify certain properties:

Definition 27. (Positive-definite kernel)
A positive-definite kernel on X x X' is a function b : X x A — R:

k(z,2') = k(2', x) Element i,j of K (the Gramm
and semi-definite positive: Matrix of the kernel)
M M
{z1,ony € XM ceRM Y Y k(i 25)e; > 0
i=1 j=1
Definition 28. (Gram matriz)
A Gram matriz K € RM*M gssociated to a kernel k on a finite set X = {z1, - ,z0}

K;; = k(z;, z;), (i, j) € {1, ..., ﬂ-f}z Matrix corresponding to the Scalar product after projection

1

If k is a positive-definite kernel then the Gram matriz K is semi-definite positive. The reverse is
also true.
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Graph Comparison = Graph Kernel

Kernel trick

Kernel Trick
@ Let X and y be two vectors in R"
o Let p(X) and ¢(y) be two functions projecting X and ¥ into
R™.

@ with n< m
— Scalar product here

o k(X.V) = (o(X). o(V))* @ can be defined
(%.5) = (¢(x), #(7)) | e
@ An explicit representation for ¢ is not required.

@ It suffices to know that IR™ is an inner product space
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(in R2)

(in R3)

Graph Comparison = Graph Kernel

Kernel trick

Example:
@ Let X and y be two vectors in R?
o Let X = (x1,x2) and ¥ = (y1,)2)
o Let p(X) and ¢(y) be two functions projecting X and y into

R3.
o k(X.y) = (X, ;}') (Scalar product in R?)? 5 5
{a ("")—;w:2 + 2x 22 oI R — R
y) =Xy 1Y1X2Y2 + Yo ¥a ( ) (2 e \/_2 2)
- A T1,T9) — (21, 29,2 T )T1Zo, T
o k(%,7) = (., V2xix2,53), (v{, V2nya,y3)) 12 1,22, %) 1> 1%2,%2
1 e k(X,¥) = (¢(X),¢(¥)) (Scalar product in R?) L A Z,
— % 2
° p(x)= (12\/_){1}(2}{2) X X x "‘x”
- n be defined as we want x . X X
—_—— »
: “ffg 2 ) ‘\\x X, \.h\ x X
(Scalar product in R3) = (Scalar product in R?)? : - . = : - "3 x :
® \"\ } _.J//" T X <1
X “\__‘_: - x 4 \;
x | « X -
= X » X _-
’ 2
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Graph Embedding with Graph Kernel

A very simple graph kernel
[Bunke2009]

Node color enumeration

b
16 — 16 Scalar product

Graph Embedding

@:G—=R" @(g)= (xi...., Xn)’
Many information can be extracted :

->nodes, cliques, paths, walk, ...
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An other question for ML with graphs...

Class model definition and prototypes?

Median Graph Ensemble d’apprentissage = S

G = argsec min SOD (g, S) o0 O?%.
s ¢ @O ;

;‘_‘)()_D 7. b} Z d g g? N \\<\1j2 ...... //d‘;
S /

S = a set of graphs
C = set of possible graphs derived from S T
d = an edit distance CT‘ |'70 SOD=d1+d2+d3

Graphe modele

Remaining Problems...
How to define GED Costs?
How to define good embedding functions?
How to get the Graph Matching at the end (not only the decision)
= Learning to match Graphs is the actual crutial question...



Graph Embeddings

.

Exemple on Letters

|
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Graph Neural Networks

How to do Deep Learning on Graphs ?

I Taxonomy:
Graph/node embedding
Explicit embedding
. Through feature extraction
End-to-end learning : Here are the GNN
Implicit embedding
Graph space

—

* Input: A graph
* OQutput: Node embeddings
4 * Assumptions: stationarity and compositionality

* The goal:

* Graph Neural Networks (GNN) perform an end-to-end learning including
feature extraction and classification.




Classical NN

Graph NN

Graph Neural Networks

Let = € R'*™ be a vector considered as an input data.

HY = f(HWY)
HHYD = o(HOW®Yy v >0

W) ¢ Rm*mit1 s a matrix of trainable parameters. m; is the number of neurons of the layer [.
For the layer 0, H(®) = 2. Layer I + 1 produces a vector H*!) € R'*™+1_ Finally, ¢ is a non
linear function. This neural network is considered as a model where parameters can be learned.
This model is also denoted as a "dense" layer or "Fully Connected (FC)" layer or a "MulLtilayer
Perceptron” (MLP). The question is how to generalize this artificial neural networks to graphs?
What to do when the input is a graph?

Instead of x € R™™ | we have G with

e V is the vertex set.

e E is the edge set.

e A is the adjacency matrix (assume binary). A € {0, 1}VI*IVI
e F € RVI*X™ is a matrix of node features.

— Categorical attributes, text, image data

— Node degrees, clustering coefficients, etc.

— Indicator vectors (i.e., one-hot encoding of each node)



Graph Neural Networks

* GNN as node encoder / decoder

Task Specific

Stuff + Loss

Output Representations

Initial Representation of each Node

of each node

node o vec

g |
N v J
Rd
Feature representation,
embedding

fiu—> R4

original network embedding space

Figures coming from : An Introduction to Graph Neural Networks: Models and Applications - Microsoft https://www.youtube.com/watch?v=zCEYiCxrL_0



Graph Neural Networks

Two Key Components

Encoder maps each node to a low-dimensional vector.

d-dimensional
ENC(v) =z, embedding
node in the input graph

Similarity function specifies how relationships in vector space map to
relationships in the original network.

similarity(u, v) ~ z, 2,
Similarity of zand vin dot product between node
the original network embeddings

Optimize the encoder such that 2 nodes have similar embeddings if they....

1. are connected?
2. Share neighbors?
3. Similarity estimate the probability of visiting v from u ?



Graph Neural Networks

 Decoder

What we would like...

od
hﬂ"hﬂ
eia?
ode

dEQ
- 29 noge ! node label
] 3bey e.g.
Zj community,

(embedding) function

encode node




Graph Neural Networks

Key idea and Intuition G=(V,EF A)= o\ :
[Kipf and Welling, 2016] Acadjacency matrix 09

F=Mode feature matrix

B

The key idea is to generate node °

embeddings based on local | o ¥
neighborhoods.  —— - [

The intuition is to aggregate node g:odil KA B F“
information from their neighbors using | | !
neural networks = done by including A.

Nodes have embeddings at each layer | .  —

and the neural network can be arbitrary ~ __iFes e | Bd oo B

l nNode2 E
1
1 ]

depth. “layer-0” embedding of node u is
its input feature

HFY = f(HD | A) —

| Nodes
1

Aggregator [
1

wit

I
: Node 3 !

0001000000

T
000J000J000

Aggregator

FHY, A) =0 (AH“}W”})

For a layer

Hyperparameters: /(1) € R™i*™i+1 () is a non-linear activation function like the ReLU.



Graph Neural Networks

From [Bresson2020]
H"™Y = f(HY, 4

f(H”},,A}zcr(AH“}W“}), -
hit! =, w’,lxﬁ
A= 2;< A;) )
One feature (hi;)Tw

R =n( Y WA )

|
Myq X 1 JEN, mxm,
'm,,, features m; x |

W = AR'W*)

m, x1 Vectorial nxm,
representation " *"

Hyperparameters: W () ¢ RmMiXmi+1 4( ) is a non-linear activation function like the ReLU.



N1
N2
N3
N4

FHY, A) = o (AH“}W“})

Graph Neural Networks

H"Y = f(HY, A)

m

111110 1/0(0
1(1(11(0 0(1|0
1(1)1 (1 0|01
0|01 |1 0|11
A F=Ho

AHW

Vv Q

G=(V,E,F,A)=
A=adjacency matrix

F=Mode feature matri.

 Aggregator i

Node 2

1
Aggregator |~

1 : 1
: r
1 H 1
1 ! I
| L
: o
i o
H Aggregator : “
| Nodes e
i ] ]
' :

|
| |
i I
| I
| |
| |
| I
= i
l Aggregator [
- " ]
dﬁ-; Node 2 I_“
| |
| I
| I
| |

500000000

Shared
Parameters

For a layer

_____________

i I
| I
W Aggregator
i ~Ed
i I
| |
|

Aggregator

500000000

Hyperparameters: W (1) ¢ R™iXmi+1 () is a non-linear activation function like the ReLU.




Graph Neural Networks

Basic approach: Average neighbor messages and apply
a neural network.




Graph Neural Networks

Training the Model

trainable matrices

h! = x, “what we learn)
/ k]\‘
hi =0 Wy > N ()‘ HBgh 1) Ve {1, K)
1

ue N(v)

Zy, — ht{{ \
* After K-layers of neighborhood aggregation, we get output
embeddings for each node.

* We can feed these embeddings into any loss function
and run stochastic gradient descent to train the
aggregation parameters.



Graph Neural Networks

2 Issues of this simple example

Issue 1

« for every node, f sums up all the feature vectors of all
neighboring nodes but not the node itself.

» Fix: simply add the identity matrix to A 2 A=A+ Id

Issue 2

« Ais typically not normalized and therefore the multiplication with
A will completely change the scale of the feature vectors.

* Fix: Normalizing A such that all rows sum to one - D1 A

f[H”f’,A) — 7 (D—IAH['E]H,—-(H)



Graph Neural Networks

The issues Altogether [Kipf et Welling, 2016]

* The two patched mentioned before + )
* A better (symmetric) normalization of the adjacency matrix D

fFHD A) =0 (f;—%fi H—3 Hc:fm;m)

Final formulation of GCNs

 Itis a slight variation on the neighborhood aggregation idea
[Kipf et al]

hk—l
h =0 [ Wy u
?,.-ENZ(H)L_J?; \/‘N(H)HN(LT)'




Final formulation of GCNs

Empirically, they found this configuration to give the best

results.
* More parameter sharing.
* Down-weights high degree neighbors.

| hkr—'l
hi=o | Wr ) :
VIN@)[IN (v)]

ue N (v)Uv




Final formulation of GCNs

Basic idea: Neighborhood Aggregation

hk—1
hy = o | Wy t — +Bihy !
| 2 [N () |

ue N (v

GCN Neighborhood Aggregation

h,ff = T Wk 7
/ uEﬂ%}uu \/‘N(H)HN(UN
Mﬁ \

same matrix for self and

_ _ per-neighbor
neighbor embeddings

normalization
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Graph Neural Networks

Neural Message Passing @

RN EER B
n
t-1

° Current
& =f(Q—0) Node State

R = =f(0—0) ‘
o » ' 9 YV » §

5 BN B A A
@ Summarize .

Received
Current Neighbor Prepare "Message” Information 0
States
HES B 'R B BN
h}
Next
Node State

An Introduction to Graph Neural Networks: Models and Applications
Microsoft https://www.youtube.com/watch?v=zCEYiCxrL_0



Graph Neural Networks

[ Average( neighbors)

U
GCNlayer1 ] @ @ @
(for every node) ‘@‘

hidden layer

—

[ Average( neighbors )

GCN Layer 2 _ ".
(for every node) @
L Output




time

Loss function / Graph Neural Networks

* node selection
| * node classification
* graph classification

Example: Node [Binary] Classification
ngumm R
xp = o(wTh} +b)
Binary cross entropy

L=Yn- logx,, 12 (1 - }’n)log(] = X")

time
L)




Graph Neural Networks — Vanilla Model

Kipf et al (2016). Semi-supervised classification with graph convolutional networks.

GCNs &

CHONC N N )
hﬂ
t-1

Current
Node State

B BB B BN

Current Neighbor Prepare “Message” °
States

SR & "% & e
hi

1 o X
= w. | R . + Z n’ Next
k (numNci.th)m:s' +1 ( G vn n-n, Jo, Node State

\

)o8eJany

Ut Ut

0E| 00|01

(

60| CTT




Graph Neural Networks — Vanilla Model

Vanilla GCNsl!:23]

nxn nxd

W+ = 7’( D—l/&hluﬂ ) re rr:;;nt:tion
@ Simplest formulation of spatial GCNs nxa 1 PER RS P
. 41 _ W Vectorial
@ Handle the absence of node ordering Ih"'l = d; - \,sﬁxh{ W !’ ‘Jl ) representation
. . . e JEN; s
@ Invariant by node re-parametrization dxd
@ Deal with different neighborhood sizes Mean
@ Local reception field by design (only neighbors are
. layer ¢ layer £ + 1
considered)

Weight sharing (convolution property)
Independent of graph size

® Limited to isotropic capability

R = foon(hé, (RS : 5 = i})
[1] Scasselli, Gori, Tsol, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009 1 = JGCN\'¥%;, J‘J

[2] TN Kipf, M Welling, Semi-supervised classification with graph convolutional networks, 2016

[3] S Sukhbsatar, A Szlam, R Fergus, Learning multiagent communication with backpropagation, 2016

AN

From [Bresson2020]



Graph Neural Networks — GraphSage Model

® Vanilla GCNs (supposing 4,;=1) : h = n( Z W ’h
~ JC N,
@ GraphSage :
@ Differentiate templat,e weights W tween neighbors /) and central node /
@ Isotropic GCNs

4 1 4
hi*t! = n( WERE 4 IR Z W'h
dx d'wfl(l lJC\ li’dd(]

\ J
Y

Mean;ey, Wyh!

Or alternatively,
Max;ey, Wih!
LSTM"(h)

layer £ layer £ + 1

[1] W Hamilton, Z Ying, J Leskovec, Inductive representation leaming on large graphs, 2017

From [Bresson2020]



Graph Neural Networks — Anisotropic Models

In general...

@ Reminder :
@ Standard ConvNets produce anisotropic filters because Euclidean grids have

directional structures (up, down, left, right).
@ GCNs such as ChebNets, CayleyNets, Vanilla GCNs, GraphSage, GIN -
compute isotropic filters as there is no notion of directions on arbitrAry graphs. |G|

@ How to get anisotropy back in GNNs 7

@ Natural edge features’? if available (e.g. different bond ja, B¢
connections between atoms). J

@ We need an anisotropic mechanism that is independent
of the node parametrization.

@ Edge degreesl®l/Edge gatesl! /Attention mechanism! :
MoNetsl®l, GATPl, Gated GCNsll can treat neighbors
differently.

[1) Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017

[2] X Bresson, T Laurent, A Two-Step Graph Convolutional Decoder for Molecule Generation, 2019

[3] F. Monti, D. Boscaini, J. Masci, E. Rodold, J. Svobxxda, M. Bronstein, Geometric deep learning on
graphs and manifolds using mixture model CNNs, 2016

[4] X Bresson, T Laurent, Residual gated graph convnets, 2017

[5) Velickovie, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018

iy

Anisotropic
weights

From [Bresson2020]



Graph Neural Networks — Anisotropic Models - GAT

Graph Attention Networks

@ GAT uses the attention mechanism!” to introduce anisotropy in the neighborhood aggregation
function.
@ The network employs a multi-headed architecture to increase the learning capacity, similar to

3
the Transformerfl. / 1 edge = 1 learned weight

hf“ = COll(latZ.\’:l (ELU( z 6’:\;‘ H'l"-.t 113>)

dx1 JEN; scalar i . 41(1 x
[ (‘\{p((“'\k'[)
. 0 N W 2 ‘11
How to lear CfJ = Softmaxy, ((’:-‘j') = Y.
WEIghtS G z . " (\xp((? & )

. 1 s alar 3’€N; i
associated ' ks K.ty s
to edge.... €i; = LeakyReLU( Concat (W™ h;, W""h) )

: A\ y
K od
: = x1
Learned weights can be dependant / K

of connected node labels....

[1] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018
[2] D Bahdanau, K Cho, Y Bengio, Neural machine translation by jointly learning to align and translate, 2014
[3] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, 2017

From [Bresson2020]



Graph Neural Networks — Anisotropic Models - GAT

Graph Transformers

@ Craph version of Transformerl! :

\}alue
scalar

. kL
hf“ — W* Con('at;{.{fl( § : €ij
dx1 dxd .}‘E'N" i\ ’

gl &, ¢ (‘XP((??;K,)
e = Soft,nuf,-v,f ) = k€
¥ exp(él;)

\ Attention
mechanism
in 1-hop
neighborhood

[1] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, 2017

From [Bresson2020]



time

Loss function for GM ?7??

* node selection
| * node classification
| » graph classification

Example: Node [Binary] Classification
hy
xp = o(wh} +b)
Binary cross entropy

L= Yn* lng" 1 (1 - )’n) log(l = xn)

time




GM with GNN

» 2 steps pipeline
— GNN 9 Fea‘[ures extractor Problem 2. Learning graph matching problem
— LP Solver = Optimal Matching 0=argmin L™ fo(8: G, G2)

((G1.Ga).vet)eTrS

— Global gradient descent TrS = {((Gy. Ga)i I} |

|
L =|v9 — YH1 W) Hamming loss |

Cuadratic-cost
Matrix

Optimal solution

Feature extractor

Graph with features Cost Matrix
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