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a b s t r a c t 

In this paper, we propose and explain the use of anytime algorithms in graph matching (GM). GM meth- 

ods have been involved in many pattern recognition problems. In such a context, GM methods are part of 

a more complex retrieval system that imposes time and memory constraints on such methods. Anytime 

algorithms are well suited for use in such an uncertain environment. An anytime algorithm quickly pro- 

vides the first solution to the problem, finds a list of improved solutions and eventually converges to the 

optimal solution instead of providing one and only one solution (i.e., the optimal solution). We describe 

how to convert a recent depth-first GM method into an anytime one. By constraining the solver, the al- 

gorithm creates an anytime heuristic search algorithm that allows a flexible trade-off between the search 

time and the solution quality. We analyze the properties of the resulting anytime algorithm and consider 

its performance in terms of the deviation of the provided solution from the optimal or the best one found 

by a state-of-the-art method. Experiments were carried out on seven different types of graph datasets. 

Moreover, the adopted algorithm was compared to four approximate error-tolerant GM methods. Results 

showed that the anytime GM can outperform suboptimal methods by only waiting for a small amount 

of supplementary time. This conclusion brings into question the usual evidence that claims that it is 

impossible to use optimal GM methods in real-world applications. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Powerful data structures, such as attributed graphs, that are

sed to represent complex entities always require more and more

omputational resources. Thus, a trade-off between accuracy and

omputational cost (i.e., execution time and consumed memory)

as to be found. On this basis, converting algorithms into anytime

lgorithms is of great benefit [10,35] . The main idea behind any-

ime algorithms comes from the simple observation that there is

o reason to stop an algorithm after the first solution is found, es-

ecially when it is possible to find a better solution with plenty

f available time. By continuing the search, the algorithm can find

 sequence of improved solutions and eventually with additional

ime, it can even converge to an optimal solution. 

Speaking of powerful data structures, attributed graphs have

ecome more and more popular in many different fields, e.g., data-

ining and pattern recognition. In this context, efficient error-

olerant GM methods are of high interest. Error-tolerant GM meth-

ds can provide precise correspondences between the vertices and

he edges of two graphs. In the literature, many different GM al-

orithms have been proposed [5,31] . However, the complexity of
∗ Corresponding author. 
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xact GM methods is NP-hard. Such a fact restricts their applica-

ility to graphs with a rather small size. 

At present, two main families of error-tolerant GM methods can

e found in the literature: exact and approximate. Few exact meth-

ds have been found in the literature [2,12,24] . On the other hand,

 number of approximate GM methods have been proposed with

educed computational time and accuracy. Some of these methods

educe the flexibility to work on graphs with different structures

nd attributes. Among these methods, we mention the spectral

ethods [30] , and the methods that are restricted to planar graphs

11] and trees [29] , to name a few of them. Some approximate

ethods also work directly on the adjacency matrix of the graphs

elaxing the combinatory optimization to a continuous one e.g.,

ath following in [32] . The graduated non-convexity and gradu-

ted concavity procedure (GNCGCP) was proposed by Liu and Qiao

17] as a general optimization framework to suboptimally solve the

ombinatorial optimization problems such as error-tolerant GM.

ther approaches can also be found in the literature such as tree-

ased methods [19] and linear sum assignment solver (e.g., bipar-

ite GM ( BP in [20] and Square Fast BP in [27] ). 

In this work, we would like to take advantage of these two

forementioned types of GM methods by merging them together

o propose a third type of GM methods that we call “Anytime GM ”.

n this basis, GM methods can be categorized differently. The first,

re methods that are fast (enough) but that can only find one

http://dx.doi.org/10.1016/j.patrec.2016.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.10.004&domain=pdf
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Fig. 1. Characteristics of anytime algorithms. 
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feasible solution (e.g., [20,27] . The second, are methods that are

tree-search based (e.g., [2,12,19] that can provide more than one

solution while traversing the search tree during the matching pro-

cess. Tree-based methods have become of great interest since com-

putational time and even the explored search space can be man-

ageable with the impact of the quality of the provided matching

solution. From here comes the primary motivation of the paper

which says that tree-based methods for GM computation can be

turned into anytime methods by varying the computational time

and studying the effect on the outputted answers. In this paper,

we propose an anytime GM algorithm based on a depth-first GM

algorithm [2] . This algorithm does not consume so much memory.

By managing time and memory at the same time, the proposed

method becomes as scalable as possible. Another contribution of

the paper is the experimental protocol where information is pro-

vided about GM quality while increasing time constraints. 

The rest of the paper is organized as follows. In Section 2 , we

introduce the problem statements of GM and the anytime algo-

rithms. In Section 3 , we review related work by describing the

main works on exact and approximate error-tolerant GM. We also

discuss the background of anytime methods and show the inter-

est of making GM methods anytime compliant. In Section 4 , we

present our anytime version of GM computation. In Section 5 , this

method is compared to approximate ones using adequate GM eval-

uation metrics in [1] that evaluate both precision and run time. Fi-

nally, Section 6 offers some conclusions and suggestions for future

work. 

2. Problem statement 

Let G 1 = (V 1 , E 1 , μ1 , ξ1 ) and G 2 = (V 2 , E 2 , μ2 , ξ2 ) be two graphs

with V 1 = (u 1 , . . . , u n ) and V 2 = (v 1 , . . . , v m 

) the sets of vertices of

G 1 and G 2 , respectively. E 1 and E 2 represent the edges of G 1 and

G 2 , successively, whereas the terms μ and ζ refer to the attributes

on vertices and edges, respectively. In error-tolerant GM, a mea-

surement of the strength of matching vertices and/or edges of two

graphs G 1 and G 2 , referred to as penalty cost, is applicable on

both graph structures and attributes. The basic idea is to assign a

penalty cost to each matching operation according to the amount

of distortion that it introduces in the transformation. A set of op-

erations that transforms G 1 into G 2 is called Edit Path in the litera-

ture [21] . When (sub)graphs differ in their attributes or structures,

a high penalty cost is added during the matching process. Such

a cost prevents dissimilar (sub)graphs from being matched since

they are different. Likewise, when (sub)graphs are similar, a small

penalty cost is added to the overall cost. This cost includes match-

ing two vertices and/or edges, inserting a vertex/edge or deleting

a vertex/edge. The question of finding the minimum cost match-

ing is a discrete optimization problem. Error-tolerant GM is NP-

hard and thus algorithms that solve optimally error-tolerant GM

suffer from both memory and time consumption. On this basis, re-

searchers have shed light on the approximate methods that can

find suboptimal solutions that are hopefully close to the optimal

ones; however, the quality of the solutions in function of the solv-

ing time has not been deeply studied yet. 

In this paper, we establish a compromise between exact and

approximate error-tolerant GM algorithms, referred to here as any-

time algorithms. 

The concept of anytime algorithms was first reported in [36] .

The desirable properties of anytime algorithms are as follows: 

• Interruptibility: After some small amount of setup time, 1 a sub-

optimal solution can be provided by stopping the algorithm at
time t . 

1 The time needed to output a first solution by an anytime method. 

t  

c  

e  
• Monotonicity: The quality of the result increases as a function

of computational time. 
• Measurable quality: We can always measure the quality of a

suboptimal result. 
• Diminishing returns: At the beginning of anytime algorithms,

the improvement in the solutions can be remarkably observed.

However, this improvement decreases over time. 
• Preemptability: Anytime algorithms can be suspended and re-

sumed with minimal overhead. 

Anytime algorithms have a trade-off between quality and ex-

cution time, see Fig. 1 . They can find the first best-so-far solu-

ion after some setup time at the beginning of the execution. From

ig. 1 , one can see that the quality of the solution improves with

ncreasing execution time. Users have the choice of stopping the

lgorithm at anytime and thus getting an answer that is satisfac-

ory, or they can run their algorithm until its completion when

t is important to find the optimal solution. It is hard to know

hen an anytime algorithm should be interrupted (by the system

r the user) to get the best-so-far answer. Thus, algorithms should

e equipped with the appropriate stopping criteria based on the

onitoring of the actual performances when the time of an opti-

al interruption is not known in advance. 

The setup time needed by anytime algorithms is a crucial point

or several reasons. First, to be able to quickly provide a solution

nd then to be stopped by the user. Second, to be able to provide a

pecified response time. For any kind of graphs, users are sure that

he matching will take no longer than the specified time. Third, to

ot let users wait specially when having a reactive system. A study

f this specific point will be proposed in the experiments. 

. Related work 

This section is organized as follows. First, we shed light on

he state-of-the-art of GM methods. Second, the literature of any-

ime methods is presented aiming at proposing a first anytime GM

ethod. Last, but not least, we show the interest of applying any-

ime properties in GM methods. 

.1. Graph matching algorithms 

.1.1. Exact error-tolerant graph matching approaches 

The A 

∗-based algorithm is considered as a foundation work for

olving GM [24] . The computations are achieved by means of an

rdered tree. Such a search tree is constructed dynamically at run

ime by iteratively creating successor vertices. Only leaf vertices

orrespond to feasible solutions and, thus, complete matching op-

rations. For a tree node p representing a partial matching in the
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earch tree, g(p) represents the cost of the partial matching op-

rations accumulated so far, and h(p) denotes the estimated costs

rom p to a leaf node representing a complete solution. The sum

(p)+h(p) is the total cost assigned to a tree node in the search

ree. If h(p) is lower or equal than the real costs then h(p) is said

o be admissible and A 

∗ is guaranteed to found an optimal path

rom the root node to a leaf node. In the worst case, the space

omplexity can be expressed as O(| γ |) [6] where | γ | is the cardi-

ality of the set of all possible edit paths. Since A 

∗ is exponential

n the number of vertices involved in the graphs, the memory us-

ge is still an issue. 

To overcome the memory problem of A 

∗, [2] proposed a recent

epth-first branch-and-bound GM algorithm, called DF . This algo-

ithm speeds up the computations of GM thanks to its upper and

ower bounds pruning strategy and its preprocessing step. More-

ver, DF does not exhaust memory as the number of pending par-

ial solutions that are stored in the set, called OPEN , is relatively

mall thanks to the DFS algorithm where the number of pending

odes is | V 1 |.| V 2 | in the worst case. In both A 

∗ and DF , the problem

f solving h(p) is of first interest. One can map the unprocessed

ertices and edges of graph G 1 to the unprocessed vertices and

dges of graph G 2 such that the resulting costs are minimal. This

apping should be done in a faster way than the exact compu-

ation and should return a good approximation of the true future

ost. In Section 4.4 , h(p) will be detailed. 

To the best of our knowledge, Almohamad and Duffuaa in

3] proposed the first linear programming formulation of the

eighted graph matching problem. It consists in determining the

ermutation matrix minimizing the L 1 norm of the difference be-

ween adjacency matrix of the input graph and the permuted ad-

acency matrix of the target one. More recently, Justice and Hero

12] also proposed a binary linear programming formulation of the

raph edit distance problem. GM is treated as finding a subgraph

f a larger graph known as the edit grid. The edit grid only needs

o have as many vertices as the sum of the total number of ver-

ices in the graphs being compared. One drawback of this method

s that it does not take into account attributes on edges which lim-

ts the range of application. 

.1.2. Approximate error-tolerant graph matching approaches 

The main reason that motivated researchers to solve approxi-

ately the problem of error-tolerant GM comes from the combi-

atorial explosion of the exact error-tolerant approaches. Numer-

us variants have been proposed for a faster but suboptimal com-

utation of GM. One of the most well-known modifications of A 

∗,

alled beam-search ( BS ), has been proposed in [19] . The purpose of

S is to prune the search tree while searching for an optimal edit

ath. Instead of exploring all edit paths in the search tree, the x

ost promising partial edit paths are kept in the set of promising

andidates OPEN . 

In [20] , the GM problem is reduced to a linear sum assign-

ent problem which can be solved in O ( n 3 ) where n is equal

o | V 1 | + | V 2 | . A cost matrix is involved in the process to gather

ertex-to-vertex costs. 2 In the rest of the paper, this algorithm is

eferred to as BP . Recently, a new version of BP for computing GM,

alled fast bipartite method ( FBP ), has been published in [27] . Such

n algorithm obtains the same distance with lower computation

ime as it reduces the size of the cost matrix. Since BP and thus

BP consider local structures rather than global ones, the optimal

M is overestimated. Recently, researchers have observed that BP ’s

verestimation is very often due to a few incorrectly assigned ver-

ices. That is, only a few vertex substitutions from the next step

re responsible for the additional (unnecessary) edge operations
2 It also partially integrates edge costs. 

r  

o  

D  
n the step after, thus resulting in the overestimation of the op-

imal edit distance. In [23] , BP was used as an initial step. Then,

airwise swapping of vertices (local search) was done aimed at

mproving the accuracy of the distance obtained so far. In [25] , a

earch procedure based on a genetic algorithm was proposed to

mprove the accuracy of BP . In [8] , a beam-search version of BP

as proposed. This work focuses on investigating the influence of

he order in which the assignments were explored. These improve-

ents increase run times. However, they improve the accuracy of

he BP ’s solution. 

.2. Anytime tree-search based algorithms 

Tree-search based GM algorithms are considered as anytime al-

orithms since they can find several solutions while exploring their

earch space. Thus, in this section, these algorithms will be sur-

eyed aiming at proposing an anytime GM method. 

.2.1. Time bottleneck and anytime algorithms 

The most common approach to transform a search algorithm,

uch as A 

∗, into an anytime algorithm consists of the following

hree changes [10] . 

• A non-admissible evaluation function, lb 0 ( p ) = g(p) + h 0 (p) ,

where the heuristic h 0 ( p ) is not admissible, is used to select the

nodes for expansion in an order that allows good, but possibly

suboptimal, solutions to be found quickly. 
• The search continues after a solution is found, to find improved

solutions. 
• An admissible evaluation function (i.e., a lower-bound function),

lb ( p ) = g ( p ) + h ( p ), where h ( p ) is admissible, is used together

with an upper bound (UB) on the optimal solution cost given by

the cost of the best solution found so far, to prune the search

space and detect convergence to an optimal solution. 

On the basis of this idea, many researchers have explored the

ffect of weighting the terms g ( p ) and h ( p ) in the node evaluation

unction differently, to allow A 

∗ to find a bounded-optimal solution

ith less computational effort. In the approach called Weighted

 

∗ ( WA 

∗) [16] , the node evaluation function is defined as lb 0 ( p )

 g ( p ) + ω 

∗h ( p ), where the weight ω is a parameter set by the

ser. If ω is greater than 1.0, the search will not be admissible and

he first solution found may not be optimal, although it is usually

ound much faster. The weighted heuristic accelerates the search

or a solution because it makes tree nodes closer to a goal seem

ore attractive, giving the search a more depth-first aspect and

mplicitly adjusting a trade-off between search effort and solution

uality. The weighted heuristic search is more effective for search

roblems with close-to-optimal solutions, and can often find a

lose-to-optimal solution in a small fraction of the time it takes to

nd an optimal solution. Some variations of the weighted heuris-

ic search have been studied. For example, an approach called dy-

amic weighting adjusts the weight with the depth of the search

13] . Moreover, a learning real-time A 

∗ ( LRTA 

∗) was proposed in

28] . 

.2.2. Memory bottleneck and anytime algorithms 

The scalability of A 

∗ is limited by the memory required to store

he lists of open path inside the search tree. Such a fact limits the

calability of anytime A 

∗. In the conception of our new GM algo-

ithms, we have to take care of this point and try to create a linear-

pace anytime algorithm. 

Considering the memory aspect, depth-first search ( DFS ) algo-

ithms are very effective for some tree-search problems since they

vercome the memory bottelneck from which A 

∗ methods suffer.

FS algorithms are anytime by nature [33] , as they systematically
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explore the leaf nodes of a state space. They quickly find a solu-

tion that is suboptimal, and then continue to search for an im-

proved solution until an optimal solution is found. They can even

use the cost of the best solution found so far as an upper bound to

prune the search space. Therefore, the DFS strategy seems to corre-

spond to a simple and efficient approach for converting an optimal

GM algorithm into an anytime one that offers a trade-off between

search time, memory consumption and quality of the provided so-

lution when more time is available. 

Several variants of A 

∗ have been developed that use less mem-

ory, including algorithms that require only linear space in the

depth of the search space. One of the most known algorithms is

recursive best-first search ( RBFS ) in [14] . RBFS is a weighted heuris-

tic search algorithm that expands frontier nodes in best-first order.

It saves memory by determining the next node to expand using

stack-based backtracking instead of selecting nodes from an open

list that contains the search tree nodes to be processed. 

3.3. The interest of anytime algorithms in graph matching 

From the aforementioned sections, we can conclude that only

a few exact GM approaches have been proposed to postpone the

graph size restriction [2,12,24] . Some approximate GM methods

(e.g., [15,20,27,32] have a polynomial running time in the size of

the involved graphs and thus are much faster than the optimal

ones. In these types of algorithms, increasing the time will not lead

to the improvement in the quality of the found solution. Moreover,

the more complex the graphs, the larger the error committed by

these methods. Graphs are generally more complex in cases where

neighborhoods and attributes do not allow to easily differentiate

between vertices. On the other hand, the behavior of the iterative

algorithms (e.g., [8,23,25] is similar to the anytime ones. These al-

gorithms can be converted to anytime algorithms because they can

find several solutions during the matching process. However, there

are no studies of the quality of the outputted solutions as a func-

tion of time. 

In this paper, we propose to define a third category for anytime

GM methods that will allow a trade-off between the valuable prop-

erties of both the previously existing types of GM methods: speed

for suboptimal methods and quality of the provided solution for

optimal ones. We believe that such anytime GM methods are of

great interest. They can output the first solution (if the solution is

satisfactory enough) or they can explore the search space in order

to improve the solution (when given more time). In the rest of the

paper, we shall demonstrate the benefit of anytime GM methods. 

4. Proposed anytime graph matching algorithm 

This section describes how we convert the arbitrary GM prob-

lem into an anytime one. The algorithms that are dedicated to

solving the GM problem can produce an instant matching between

two graphs. If they are given the luxury of additional time, they

can increase the precision of this matching. Anytime algorithms

find the first solution and continue the search to improve it. Each

time a new solution is found, it is saved (or outputted). Our algo-

rithm, referred to as anytime depth-first ( ADF ), is an adapted ver-

sion of the DF algorithm in [2] in which important properties for

anytime algorithms are added and studied such as interruptibility,

monotonicity and measurable quality, see Section 2 . The following

sections describe the main parts of this algorithm in detail. 

4.1. Pre-processing 

Before starting the branch-and-bound part, DF initializes the

important data structures to speed up the tree search exploration.
reprocessing includes two steps: cost matrices construction and

ertex-sorting strategy. 

.1.1. Cost matrices 

The vertex and edges cost matrices ( C v and C e ) are constructed,

espectively. This step aims to speed up the branch-and-bound part

y getting rid of the re-calculations of the assigned costs when

atching the vertices and edges of G 1 and G 2 . 

A vertex cost matrix C v , whose dimension is (n + 2) × (m + 2) ,

s constructed as follows: 

 v = 

c 1 , 1 . . . . . . c 1 ,m 

c 1 ← ε c 1 → ε

. . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . 

c n, 1 . . . . . . c n,m 

c n ← ε c n → ε

c ε→ 1 . . . . . . c ε→ m 

∞ ∞ 

c ε← 1 . . . . . . c ε← m 

∞ ∞ 

here n is the number of vertices of G 1 and m is the number of

ertices of G 2 . 

Each element c i , j in the matrix C v corresponds to the cost of as-

igning the i th vertex of graph G 1 to the j th vertex of graph G 2 . The

eft upper corner of the matrix contains all possible vertex substi-

utions, whereas the right upper corner represents the cost of all

ossible insertions and deletions of the vertices of G 1 , respectively.

he left bottom corner contains all possible vertices insertions and

eletions of vertices of G 2 , respectively whereas the bottom right

orner elements cost is set to infinity which concerns the substitu-

ion of ε − ε. 

Similarly, C e contains all the possible substitutions, deletions

nd insertions of the edges of G 1 and G 2 . C e is constructed in the

ery same way as C v . 

.1.2. Vertex-sorting strategy 

To speed up the exploration of the search tree while search-

ng for the optimal GM, it is important to sort V 1 to start with

he most promising vertices. To sort V 1 , the algorithm applies

P [20] to obtain a suboptimal edit path ( EP = { u i → v k , · · · , u n →
 l , · · · } with u ∈ V 1 and v ∈ V 2 ). From this edit path, vertex-to-

ertex mapping costs are used to sort V 1 in ascending order. BP

20] outputs an initial edit path EP and its distance d BP which can

hen be used as a first UB . Then V 1 is sorted according to the

atching weight C ij of the cost matrix C . That is, each u i is given a

eight that corresponds to the matching cost of u i → v ik ∈ EP . 

.2. Branch-and-bound 

.2.1. Tree node structure 

Each tree node p in the search tree contains information about

he matched vertices and edges of G 1 and G 2 in p . It also con-

ains, the estimated future cost, referred to as h ( p ) [24] , from node

 which does not overestimate the cost of the complete solution.

his function is described in Section 3.1.1 . In addition to h ( p ), the

otal cost of the matched vertices and edges, referred to as g(p) ,

s also included in each node p . Both h and g depend on the at-

ributes as well as on the structure of the involved sub-trees. The

ost functions involved with each dataset permit to calculate the

nsertions, deletions and substitutions of vertices and/or edges. 

.2.2. Branching and selection strategies 

The solution space is organized as an ordered tree which is ex-

lored in a depth-first way. In DFS, each node is visited just be-

ore its children. In other words, when traversing the search tree,

ne should travel as deep as possible from node i to node j before

acktracking. The exploration starts with the root node. In order

o generate the children of tree nodes, each tree node p takes the
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Algorithm 1 Anytime depth-first GM algorithm (ADF). 

Input: Non-empty attributed graphs G 1 = (V 1 , E 1 , μ1 , ζ1 )) and G 2 = 

(V 2 , E 2 , μ2 , ζ2 ) where V 1 = { u 1 , . . . , u | V 1 | } , V 2 = { v 1 , . . . , u | V 2 | } , μ and 

ζ are the attributes associated with the vertices and edges, respec- 

tively. 

Output accessible at anytime: UB = the current minimum 

edit path cost and BestEditPath = sequence of edit opera- 

tions. 

1: Initialization: OP EN ← ∅ , BestEditPath ← φ, UB ← ∞ 

Pre-processing: 

2: Generate C v , C e 
3: Optional: {Steps below are optional} 

( UB , BestEditPath ) ← BP (G 1 , G 2 ) 

Export( UB , BestEditPath ) 

V̄ 1 ← Sort( V 1 ) {in ascending order of BP (G 1 , G 2 ) } 

Branch-and-Bound: 

4: root ← φ
Generate the children of root , sort them in ascending order of 

g + h and insert them into OP EN

5: while OP EN != ∅ do 

6: Take the first element p min and remove it from OP EN

7: Generate the children of p min , sort them in ascending order 

of g + h and insert them into OP EN

8: if p min has no children then 

9: Insert all non-matched vertices of V 2 into p min 

10: if g(p min ) < UB then 

11: UB ← g(p min ) , BestEditPath ← p min 

12: Export( UB , BestEditPath ) 

13: end if 

14: end if 

15: end while 
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i  
ext most promising vertex u i in the sorted list of V 1 and gen-

rates some edit paths by matching u i with all the non-matched

ertices of G 2 in addition to deleting u i (i.e., u i → ε). Afterwards,

he children of p are sorted in an ascending manner according to

b(q) . Then these children are added to OPEN . Since the children are

orted in ascending order, the exploration is achieved by choosing

he first element in OPEN to be explored and so on. Thus, each

ode is visited just before its children. 

.3. Reduction strategy 

As in A 

∗, pruning, or bounding, is achieved thanks to h(p) , g(p)

nd a global UB obtained at the node leaves. Formally, for a node p

n the search tree, lb is taken into account and compared with UB .

hat is, if g(p)+h(p) is less than UB then p can be explored. Oth-

rwise, the encountered p will be pruned from OPEN and the next

romising node is evaluated and so on until the best UB is found

hat represents the optimal solution of ADF or until the process

s interrupted by the timer since it is an anytime algorithm. This

lgorithms differs from A 

∗ since at anytime t , in the worst case,

PEN contains at most | V 1 |.| V 2 | elements and hence the memory

onsumption is not exhausted. 

.4. Upper and lower bounds 

The estimation of h(p) should be done in a faster way than the

xact computation and should return a good approximation of the

rue future cost. In our proposal, h(p) is calculated via a bipar-

ite heuristic [24] . This is achieved by mapping vertices the unpro-

essed vertices and edges of graph G 1 to the unprocessed vertices

nd edges of graph G 2 such that the resulting costs are minimal.

n the basis of the cost matrices C v and C e , Munkres’ algorithm

18] can be executed separately on vertices and edges. This algo-

ithm finds the optimal, i.e., the minimum cost, assignment of the

lements (vertices or edges) represented by the rows to the ele-

ents represented by the columns of matrix C v or C e in polynomial

ime. That is, in the worst case the maximum number of opera-

ions needed is O((n + m ) 3 ) , where (n + m ) is the dimensionality

f the cost matrix. While traversing the search tree, UB is replaced

y the best UB found so far (i.e., a complete path whose cost is less

han the current UB ). After finishing the traversal of the search tree

i.e., when OPEN equals { φ}), the algorithm outputs the best UB as

n optimal solution of ADF . Encountering upper bounds when per-

orming a depth-first traversal efficiently prunes the search space

nd thus helps in finding the optimal solution faster than A 

∗ does. 

.5. Anytime properties 

The time needed to find the first solution is called setup time .

ne has to decide whether having a long setup time and thus find-

ng a satisfactory first solution for users or taking a shorter setup

ime and thus finding a less satisfactory first solution. In our al-

orithm, an initial solution can be computed using BP in cubic

ime or it can remain unset until the first branch is explored in

uadratic time. This choice can be seen as a parameter. Other de-

isions can also be done but they are out of the scope of this paper.

ADF guarantees to find the optimal solution of GM ( G 1 , G 2 ) if no

ime limit is set. It also regularly provides better and better solu-

ions and exports all of them while exploring the search tree. 

One should also notice that having a sufficiently good first solu-

ion can have an important impact on the time needed to find the

ext better solutions. That is, the setup time and the convergence

lope are closely coupled. 
.6. Pseudo code 

As depicted in Algorithm 1 , ADF starts by the initialization and

re-processing steps (lines 1 to 3). First, C v and C e are generated

line 2). Second, UB is set to ∞ or calculated by BP (line 3). Third,

 1 is sorted according to the distances obtained in the matrix of

P (line 3) resulting in a new list, referred to as V̄ 1 . Note that if BP

s not used as an upper bound, V 1 will not be sorted. The traver-

al of the search tree starts by generating the root’s children (line

). The most promising vertex u 1 is taken from V̄ 1 . Consequently,

ertex u 1 is substituted with all the vertices in V 2 . In addition, the

eletion of u 1 is also generated (i.e., u 1 → ε). The children (i.e.,

appings between vertices) are sorted in ascending order of g + h

nd then inserted in OPEN (line 4). Since the children inserted in

PEN are ordered, the most promising child p min at the deepest

evel in the search tree will be first selected (line 6). The children

f p min are generated by substituting vertex u i ∈ V 1 with the un-

atched vertices in V 2 in addition to its deletion (line 7). On the

ther hand, if all the vertices of V 1 are matched, all the unmatched

ertices of V 2 will be inserted in p min (line 9). UB and BestEditPath

re updated whenever a better solution is encountered (lines 10

o 13). Note that the output is available at anytime after the setup

ime. As long as there is some available time and there are nodes

o explore in OPEN , the exploration step continues (line 5). Note

hat edge operations are taken into account in the matching pro-

ess when substituting, deleting or inserting their corresponding

ertices. 

. Experiments 

This section describes the protocol and shows the exper-

mental results that prove the validity of the approach. A
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Table 1 

Methods included in the experiments. 

Acronym Reference Details 

ADF This paper AnyTime GM 

BS-1 and BS-100 [19] beam-search with OPEN size = 1 and 

100, respectively 

BP [20] The bipartite GM 

FBP [27] Fast BP 

SBP-Beam [8] Sorted beam-search BP where the 

sorting strategy is deviation-inverse 

JHBLP [12] A binary linear GM formulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

 

m  

τ
d  

e  

t  

s  

a  

r  

e  

t  

d  

h  

t  

t  

t

 

M  

o  

b  

1  

f  

i  

1  

l  

d  

u  

b  

d  

v  

o  

p  

d

5

 

I  

c  

5

5

 

t  

g  

s

 

i  

t  

o  

m

d

 

w  

t  

s  

t  

w  
demonstration of the concept of anytime GM can be found on

the following website: http://www.rfai.li.univ-tours.fr/PagesPerso/

zabuaisheh/anytimeGM.html . 

5.1. Included methods 

Table 1 summarizes the methods included in the experiments.

The state-of-the-art methods were not anytime methods. However,

for the experimental evaluations, we added the time interruption

property to each of them. Several versions of ADF and BS are tested

where methods with LB refer to the versions where h(p) is inte-

grated. In addition, ADF-UB indicates that the first upper bound

(line 3 in Algorithm 1) is integrated. See Section 4.4 for the de-

scription of the lower and upper bounds. 

In all the aforementioned methods, memory consumption is not

exhausted. The memory complexity of ADF and ADF-UB algorithms

is relatively small thanks to the DFS algorithm where the num-

ber of pending nodes is | V 1 |.| V 2 | in the worst case. A 

∗ could also

have been added to the experiments, however, its memory com-

plexity is exponential. Therefore, A 

∗ will not be able to keep ex-

ploring the search tree and thus outputting feasible (i.e., complete)

solutions before timing out. We also implemented the algorithm

of [12] which is then solved via the CPLEX-12 mathematical solver.

For all graph comparisons, this method was unable to output fea-

sible solutions in 500 milliseconds (ms) or less. This is due to the

setup time needed by the mathematical solver, which takes more

time to solve the continuous relaxation before starting the tree

search exploration. 

5.2. Databases 

Seven datasets are integrated in the experiments: (GREC, Mu-

tagenicity, Protein, CMU, PAH and two synthetic datasets). Three

of them (i.e., GREC, Mutagenicity and Protein) were taken from

the IAM Graph Database Repository [22] . The CMU dataset can

be found at the CMU website [4] . These four datasets have been

recently included in a new repository, called GDR4GED [1] , that

aims at evaluating the scalability of GM methods. GDR4GED is an-

notated with GM ground truth. For more information, visit IAPR-

C15’s website. 3 In addition to these datasets, a chemical dataset,

called PAH, was taken from GREYC’s Chemistry dataset repository. 4 

Moreover, a new synthetic dataset was generated for experimental

evaluations. This dataset was created using the Erdos-Renyi model

[7] . The reason for having chosen such datasets is to have a vari-

ety of graph attributes (i.e., numeric and/or symbolic attributes on

vertices and/or edges or non-attributed vertices and/or edges) and

densities (i.e., high and low density graphs). In addition, the num-

ber of vertices in these datasets starts from 20 vertices up to 200

vertices. 

Table 2 summarizes the characteristics of all the selected
datasets. 

3 https://iapr-tc15.greyc.fr/links.html . 
4 https://brunl01.users.greyc.fr/CHEMISTRY/index.html . 

t  

u

 

d  
Each dataset has specific edit cost functions. Two non-negative

eta parameters are associated to GM: ( τv ertex and τ edge ) where

v ertex denotes a vertex deletion or insertion costs whereas τ edge 

enotes an edge deletion or insertion costs. A third meta param-

ter α is integrated to control whether the edit operation cost on

he vertices or on the edges is more important. Table 3 demon-

trates the cost functions of each of the included datasets as well

s their meta parameters. Note that the synthetic datasets, the pa-

ameters were taken from the dataset Letter-Low in IAM [22] . The

rror-tolerant GM matching is more difficult when there are no at-

ributes on vertices and/or edges or when structures are redun-

ant. For instance, matching the graphs of PAH is difficult since it

as completely unattributed graphs. On the other hand, matching

he graphs of GREC is easier since it is rich with attributes. Note

hat in our implemented version of FBP , the three restrictions on

he edit costs were not included [27] . 

In the experiments, we selected 10 graphs from each of GREC,

UTA and Protein. These graphs represent the maximum number

f vertices that was found on each of the datasets. The graphs can

e downloaded from the GDR4GED repository [1] . On this basis,

00 pairwise comparisons were carried out on these datasets. As

or CMU, one hundred eleven images in total are publicly available

n [4] . Six hundred sixty comparisons were carried out. On PAH,

0 graphs whose size varies from 17 to 24 vertices were also se-

ected and, thus, it also results in 100 comparisons. Two synthetic

atasets each of which had 10 graphs of 200 vertices were created

sing the Erdos-Renyi model [7] . Two density graph families can

e found: low density (i.e., 0.1) and high density (i.e., 0.4). These

ensities refer to the probability of having an edge between two

ertices. The purpose of such a database was to see how GM meth-

ds behave when having low, or high, density graphs. The meta

arameters of the synthetic datasets were taken from the Letter

ataset [22] . 

.3. Environment 

The evaluation were conducted on a computer with a 24-core

ntel i5 processor at 2.10GHz and 16 GB of memory. A memory

onstraint was set to 1GB. The time constraint was varied from

 ms to 500 ms on all databases. 

.4. Protocol 

The objective of the experiments was to study the trade-off be-

ween the quality and the time of all the methods so as to investi-

ate the matching accuracy in function of the time. Each compari-

on was tested under a given time and memory constraints. 

To evaluate ADF , we chose a deviation metric to compare all the

ncluded methods, see [1] for more details about the GM evalua-

ion metrics. We compute the error committed by each method m

ver the reference distances. For each pair of graphs matched by

ethod m , we provide the following deviation measure: 

ev (G i , G j ) 
m = 

| d(G i , G j ) 
m − R G i ,G j | 

R G i ,G j 

, ∀ (i, j) ∈ � 1 , G � 2 , ∀ m ∈ M 

(1)

here G is the number of graphs. d ( G i , G j ) 
m is the distance ob-

ained when matching G i and G j using method m and R G i ,G j corre-

ponds to the best known solution. For the IAM datasets, we used

he ground truth of [1] as a reference. The humans’ ground truth

as used as a reference for CMU. On the other hand, for PAH, op-

imal solutions were provided by carrying out the computations

sing the algorithm in [12] . 

In the experiments, the average deviation was calculated per

ataset where the x-axis represents the time limit t and the y-axis

http://www.rfai.li.univ-tours.fr/PagesPerso/zabuaisheh/anytimeGM.html
https://iapr-tc15.greyc.fr/links.html
https://brunl01.users.greyc.fr/CHEMISTRY/index.html
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Table 2 

The characteristics of the datasets included in the experiments. 

Dataset GREC-20 MUTA-70 Protein-40 CMU houses PAH Synthetic (0 .1) Synthetic (0 .4) 

Vertex labels x,y coordinates Chemical symbol Type and amino acid sequences None None None None 

Edge labels Line type Valence Type and length Distance between points None None None 

v ertices 20 70 40 30 20 .7 200 200 

edges 21 .6 73 .8 78 .3 79 24 .4 2013 7941.8 

Max vertices 20 70 40 30 28 200 200 

Max edges 22 75 95 79 34 2095 8089 

Table 3 

The cost functions and meta parameters of the datasets. 

Dataset GREC-20 MUTA-70 Protein-40 CMU houses PAH Synthetic (0.1) Synthetic (0.4) 

τv ertex 90 11 11 ∞ 3 0 .3 0 .3 

τ edge 15 1 .1 1 – 3 0 .5 0 .5 

α 0 .5 0 .25 0 .75 0 .5 0 .5 0 .75 0 .75 

Vertex substitution function Extended euclidean 

distance 

Dirac function Extended string 

edit distance 

0 0 L2 norm L2 norm 

Edge substitution function Dirac function Dirac function Dirac function Dirac function 0 Dirac function Dirac function 

Reference of cost functions [26] [26] [26] [34] [9] – –

Fig. 2. GREC Deviation: Left (up to 20 ms), Right (up to 500 ms). 
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hows the average deviation within t . If a method m did not output

 solution before timing out, the deviation would be set to 100%. 

We also measured the setup time needed by ADF to output an

nitial solution (i.e., the first complete solution found when explor-

ng the search tree). Only ADF , ADF-UB , BS-100 and SBP-Beam were

ble to find one or more solutions while exploring the search tree.

his time was compared with the time taken by BS-1 , BP and FBP ,

hich outputted one and only one complete solution. Hereafter,

his measured time will be called “setup time ”. 

. Results and discussions 

Fig. 2 illustrates the deviation on GREC-20 when varying the

vailable time up to 20 ms and 500 ms (see Fig. 2 ). One can ob-

erve that ADF was the fastest method to output solutions, fol-

owed by BP . however, ADF was not the most precise algorithm.

his is due to the first upper bound found by the algorithm and

ts inability to prune the search tree of GREC under a very limited

ime constraint. Up to 500 ms, ADF-UB was the most precise al-

orithm since it started with a satisfactory UB that was found at

he setup time. Afterwards, ADF-UB improved its first UB by out-
utting better ones. Under small time constraints, FBP was less

recise than BP . However, when we increased the time, the gap be-

ween them shrunk and finally they got the same precision start-

ng from 100 ms. Concerning BS-100 , for most of the comparisons,

t was unable to output feasible solutions before violating the time

onstraints. 

On Protein-40, as illustrated in Fig. 3 , as on GREC-20, ADF

as the fastest method to output solutions, followed by BS-1 and

S-100 . FBP and BP solved the linear assignment problem with

he help of the Hungarian and Munkres’ methods, respectively.

his fact prevents them from outputting solutions rapidly for rel-

tively large graphs when time matters. Since ADF-UB computes

P as a first UB , its first solution is highly dependent on BP .

hen we added more time, BP and FBP outputted feasible so-

utions. Unlike the latter methods, ADF , ADF-UB , BS-100 and FBP-

eam could still improve their solutions until the algorithm was

uspended. 

Fig. 4 shows the results on CMU. The same remarks as on Pro-

ein can be seen; however, the deviation of BP and FBP was high

see Fig. 4 (right)). On the other hand, ADF and ADF-UB succeeded

n improving the deviation as the time constraint increased. On
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Fig. 3. Protein deviation: left (up to 40 ms), right (up to 500 ms). 

Fig. 4. CMU deviation: left (up to 40 ms), right (up to 500 ms). 
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Protein and CMU, BS-100 ’s deviation was quite high, as it did not

find complete solutions before timing out. 

As for MUTA-70, Fig. 5 (a) shows that when time matters, FBP

was surprisingly faster in outputting solutions, followed by BP , SBP-

Beam and ADF-UB . We have argued that MUTA has low density

graphs than Protein where the average | V |/| E | ratio is 30.3/30.8 on

MUTA and 32.6/62.1 on Protein, where | V | and | E | are the total

numbers of vertices and edges, respectively. For this reason, solving

the edges assignment problem on MUTA is faster than Protein and,

thus, FBP and BP were able to output their solutions faster than

ADF . After 40 ms, both ADF and ADF-UB beat BP . For instance, when

C T was equal to 400 ms, the deviation of BP was 45.24% whereas

the deviation of ADF and ADF-UB was 35.12% and 33.02%, respec-

tively. 

To study the effect of h ( p ), mentioned in Section 3.1.1 , on ADF

and BS-1 , we carried out an additional experiment on MUTA-70

with plenty of time available. h ( p ) was calculated using BP which is

applied on the unprocessed vertices and edges analogously. Thus,
everal versions of ADF and BS were tested where methods with

B refer to the versions where the lower bound was integrated.

he results in Fig. 6 demonstrates that, after 40 0 0 ms, BS-100-LB ,

DF-LB and ADF-UB-LB had the smallest deviation. Among these

lgorithms, ADF-UB-LB was the most accurate. One can conclude

hat with more time, h ( p ) is important since it helps in converging

aster to the optimal solution. BS-100 was also unable to output

easible solutions owing to memory saturation. 

Fig. 7 demonstrates the results on PAH. Since this database con-

ains unattributed graphs, BP -like algorithms had a very high devi-

tion as they failed in finding a satisfactory matching. Thus, ADF

nd ADF-UB got the best deviations (i.e., 31.26% and 30.44%, re-

pectively). On this dataset, SBP-Beam was more precise than BP ,

here the gap between them was 8%. 

For a better understanding of the performance of anytime GM

lgorithms, Table 4 directs the readers’ attention to the average

etup time, (see Section 4.1 ). We studied the average setup time on

wo databases on which anytime algorithms behaved differently.
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Fig. 5. MUTA deviation: left (up to 40 ms), right (up to 400 ms). 

Fig. 6. MUTA Deviation: (up to 60 0 0 ms). 

Table 4 

Average setup time and deviation on Protein and MUTA. 

Protein 

SFBP BP BS-1 ADF ADF-UB 

Setup time (ms) 47 .60 49 .81 12 .10 12 .88 50 .02 

Deviation 4 .344 1 .789 31 .597 31 .490 1 .789 

MUTA 

Setup time (ms) 15 .60 17 .55 20 .02 24 .70 18 .35 

Deviation 37 .874 42 .254 43 .169 44 .169 42 .254 

O  

r  

t  

f

 

g  

h  

Fig. 7. PAH deviation: up to 500 ms. 

Table 5 

The average setup time and deviation on the synthetic database. 

Density = 0.1 Density = 0.4 

FBP BP ADF FBP BP ADF 

Setup Time (ms) 7169 7984 2146 383,526 391,391 5365 

Deviation ( % ) 0 2.2 0 10.4 34.5 0 

o  

w  

g

7

 

t  

p  
n Protein, ADF proved to be faster than the approximate algo-

ithms. On average, ADF only needed 12.88 ms to output a solu-

ion. However, this was not the case on MUTA where FBP was the

astest (only 15.60 ms on average). 

We have previously argued that FBP and BP are faster when

raphs have low density whereas ADF is faster when graphs are

ave high density. To prove that, we carried out some experiments
n the synthetic database, (see Section 5.2 ). Table 5 shows that ADF

as the fastest and the most precise algorithm when increasing

raph density. 

. Conclusion and perspectives 

In the present paper, we have considered the problem of error-

olerant GM computation under time and memory constraints. We

resented a simple approach for converting an optimal algorithm
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of GM into an anytime one that offers a trade-off between search

time and solution quality. DFS algorithms are anytime by nature.

Thus, in this paper, we proposed an anytime algorithm, referred to

as ADF , that is based on a depth-first GM algorithm ( DF ) in [2] .

DF does not consume so much memory. It is also able to find an

initial, possibly suboptimal, solution quickly and then continues to

search for improved solutions until it converges to the optimal so-

lution. In order to convert DF into an anytime one, DF is equipped

with the appropriate interruption criteria and the output is made

available at anytime t . 

The simplicity of ADF makes it very easy to use. It can be

used not only when the optimal solution is desired, but also when

time is limited. In the experiments, we focused on both the de-

viation when varying the timeout and the minimal time needed

by anytime algorithms to get the first solution on different graph

datasets. Results showed that there is a trade-off between time

and quality. FBP and BP were faster when graphs were less dense

whereas ADF was faster when graphs were denser. It is remarkable

that anytime algorithms are also effective when we have some ad-

ditional time, which guarantees to find better solutions. Merging

ADF and BP as in ADF-UB is also beneficial since ADF can improve

the solutions found by BP . On the selected datasets, experiments

showed that ADF and ADF-UB outperformed all approximate meth-

ods by only waiting for 100 ms per graph comparison. This con-

clusion brings into question the usual evidences that claim that

it is impossible to use optimal methods in real-world applications

when matching large graphs. We conclude that ADF provides an

attractive approach to challenging GM problems, especially when

the time and memory available are limited or uncertain and when

we are interested in improving the best solution found so far. 

To the best of our knowledge, this work was the first attempt to

introduce anytime algorithms for GM. In future work, more experi-

ments will be conducted to understand better the effect of graph’s

structures on approximate and anytime algorithms. Moreover, oth-

ers heuristic search methods or anytime version (like CBS [33] ) can

be adapted to solve the GM problem and could be compared with

the method proposed in the paper. We will also propose solutions

for anytime GM algorithms that can be interrupted (stopped) au-

tomatically when the quality of the actual solution is sufficient for

the targeted application or when, even with much more time, the

quality of the solution will not increase significantly. 
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